Surface science approach of MnO-CeOx(111) mixed oxide
Abstract
Ceria has unique abilities that makes it possible to be used as catalyst supports. The abilities of ceria are to store and release oxygen and easy transformation of Ce+4 to Ce+3 and vice versa Ceria as a catalyst support, showed a disadvantage over high temperature. The purpose of the paper is finding the right recipe for growing Mn-ceria mixed oxide. STM, XPS and LEED were used to acquire fundamental information. LEED experiments from Mn doped ceria mixed oxide specified that the films is well ordered. The LEED results is showing six spots that indicated the well ordered film and follow the (111) plane. Furthermore, for Mn doped ceria mixed oxide, there is no disctinct difference between higher stoichiometry and lower stoichiometry mixed oxide. But between higher and lower percentage of Mn, it has different structure. The triangle islands from higher Mn mixed oxide is MnO follow (111) plane. For both lower and higher Mn, oxygen vacancies can be recognized in reduced films.
Full Text:
PDFReferences
Avgouropoulos, G., Ioannides, T., Matralis, H. (2005) Influence of the preparation method on the performance of CuO–CeO2 catalysts for
the selective oxidation of CO. Appl. Catal. B: Environ., 56(1-2): 87-93
Barth, C., Laffon, C., Olbrich, R., Ranguis, A., Parent, P., Reichling, M. (2016) A perfectly stoichiometric and flat CeO 2 (111) surface on a bulk-like ceria film. Scient. rep., 6(1): 1-6
Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W., Gerson, A.R., Smart, R.S. C. (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci., 257(7): 2717-2730
Fu, Q., Saltsburg, H., Flytzani-Stephanopoulos, M. (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 301(5635): 935-938
Gandhi, H. S., Graham, G., McCabe, R. (2003) Automotive exhaust catalysis. J. Catal., 216(12): 433-442
Ginting, E., Hu, S., Thorne, J.E., Zhou, Y., Zhu, J., Zhou, J. (2013) Interaction of Mn with reducible CeO2 (1 1 1) thin films. Appl. Surf. Sci., 283: 1-5
Ginting, E., Peterson, E. W., Zhou, J. (2016) Scanning tunneling microscopy studies of Mn-doped CeOx (111) interfaces. Appl. Catal. B: Environ., 197: 337-342
Heger, E.A.K.A.G. (1999) The structures of CCe2O3+δ, Ce7O12, and Ce11O20. J. Sol. Sta. Chem., 147: 16
Horcas, I., Fernández, R., Gomez-Rodriguez, J.M., Colchero, J.W.S.X., Gómez-Herrero, J.W.S.X.M., Baro, A.M. (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Scient. Instr., 78(1): 013705
Kaneko, H., Miura, T., Ishihara, H., Taku, S., Yokoyama, T., Nakajima, H., Tamaura, Y. (2007) Reactive ceramics of CeO2–MOx (M= Mn, Fe, Ni, Cu) for H2 generation by two-step water splitting using concentrated solar thermal energy. Energy, 32(5): 656-663
Kašpar, J., Fornasiero, P., Hickey, N. (2003) Automotive catalytic converters: current status and some perspectives. Catal. Today, 77(4): 419-449
Larachi, F., Pierre, J., Adnot, A., Bernis, A. (2002) Ce 3d XPS study of composite CexMn1− xO2− y wet oxidation catalysts. Appl. Surf. Sci., 195(14): 236-250
Lee, J.G., Park, J.H., Shul, Y.G. (2014) Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm− 2 at 550 C. Nat.
Communicat., 5(1): 1-10
Liang, Q., Wu, X., Weng, D., Xu, H. (2008) Oxygen activation on Cu/Mn–Ce mixed oxides and the role in diesel soot oxidation. Catal. Today, 139(1-2): 113-118
Liu, C., Luo, L., Lu, X. (2008) Preparation of mesoporous Ce 1− x Fe x O 2 mixed oxides and their catalytic properties in methane combustion. Kinet. Catal., 49(5): 676-681
Liu, Z., Ding, D., Liu, M., Ding, X., Chen, D., Li, X., Xia, C., Liu, M. (2013) High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures. J. Pow. Sour., 241: 454-459
Machida, M., Uto, M., Kurogi, D., Kijima, T. (2000) MnO x− CeO2 Binary Oxides for Catalytic NO x Sorption at Low Temperatures. Sorptive Removal of NO x. Chem. Mat., 12(10): 3158-3164
Mullins, D.R., Radulovic, P.V., Overbury, S.H. (1999) Ordered cerium oxide thin films grown on Ru (0001) and Ni (111). Surf. Sci., 429(1-3): 186-198
Nakayama, M., Martin, M. (2009) First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations. Phy. Chem. Chem. Phy., 11(17): 3241-3249
Naumkin, A.V., Kraut-Vass, A., Gaarenstroom, S.W., Powell, C.J. (2012) NIST standard reference database 20, version 4.1. Nat. Inst. Stand. Technol. NIST, 1: 1-49
Nolan, M., Grigoleit, S., Sayle, D.C., Parker, S.C., Watson, G.W. (2005a) Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria. Surf. Sci., 576(1-3): 217-229
Nolan, M., Parker, S.C., Watson, G.W. (2005b) The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Sur. Sci., 595(1-3): 223-232
Pozdnyakova, O., Teschner, D., Wootsch, A., Kröhnert, J., Steinhauer, B., Sauer, H., Toth, L., Jentoft, F.C., Knop-Gericke, A., Paal, Z., Schlögl, R. (2006) Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism. J. Catal., 237(1): 17-28
Priolkar, K.R., Bera, P., Sarode, P.R., Hegde, M.S., Emura, S., Kumashiro, R., Lalla, N.P. (2002) Formation of Ce1-x Pd x O2-δ Solid Solution in Combustion-Synthesized Pd/CeO2 Catalyst: XRD, XPS, and EXAFS Investigation. Chem. Mat., 14(5): 2120-2128
Qi, G., Yang, R.T. (2003) Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx–CeO2 catalyst. J. Catal., 217(2): 434-441
Qi, G., Yang, R.T. (2004) Characterization and FTIR studies of MnO x− CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. J. Phy. Chem. B, 108(40): 15738-15747
Senanayake, S.D., Mudiyanselage, K., Bruix, A., Agnoli, S., Hrbek, J., Stacchiola, D., Rodriguez, J.A. (2014) The unique properties of the oxide-metal interface: reaction of ethanol on an inverse model CeO x–Au (111) catalyst. J. Phy. Chem. C, 118(43): 25057-25064
Shah, P.R., Kim, T., Zhou, G., Fornasiero, P., Gorte, R.J. (2006) Evidence for entropy effects in the reduction of ceria− zirconia solutions. Chem. Mat., 18(22): 5363-5369
Song, Z., Liu, W., Nishiguchi, H., Takami, A., Nagaoka, K., Takita, Y. (2007) The Pr promotion effect on oxygen storage capacity of Ce–Pr oxides studied using a TAP reactor. Appl. Catal. A: Gen., 329: 86-92
Sun, C., Li, H., Chen, L. (2012) Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci., 5(9): 8475-8505
Tabakova, T., Avgouropoulos, G., Papavasiliou, J., Manzoli, M., Boccuzzi, F., Tenchev, K., Vindigni, F., Ioannides, T. (2011a) CO-free hydrogen production over Au/CeO2–Fe2O3 catalysts: Part 1. Impact of the support composition on the performance for the preferential CO oxidation reaction. Appl. Catal. B: Environ., 101(3-4): 256-265
Tabakova, T., Manzoli, M., Paneva, D., Boccuzzi, F., Idakiev, V., Mitov, I. (2011b) CO-free hydrogen production over Au/CeO2–Fe2O3 catalysts: Part 2. Impact of the support composition on the performance in the water-gas shift reaction. Appl. Catal. B: Environ., 101(3-4): 266-274
Tang, Y., Zhang, H., Cui, L., Ouyang, C., Shi, S., Tang, W., Li, H., Lee, J., Chen, L. (2010) First-principles investigation on redox properties of M-doped CeO 2 (M= Mn, Pr, Sn, Zr). Phy Rev. B, 82(12): 125104
Trovarelli, A. (1996) Catalytic properties of ceria and CeO2-containing materials. Catal. Rev., 38(4): 439-520
Trovarelli, A. (2002) Catalysis by ceria and related materials (Vol. 2). World Scientific Publishing Co. Pte. Ltd., 5 Toh Tuck Link, Singapore 596224
Vickers, S.M., Gholami, R., Smith, K.J., MacLachlan, M.J. (2015) Mesoporous Mn-and La-doped cerium oxide/cobalt oxide mixed metal catalysts for methane oxidation. ACS Appl. Mat. Interf., 7(21): 11460-11466
Wagner, C.D., Davis, L.E., Zeller, M.V., Taylor, J.A., Raymond, R.H., Gale, L.H. (1981) Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interf Anal., 3(5): 211-225
Wu, X., Liang, Q., Weng, D., Fan, J., Ran, R. (2007) Synthesis of CeO2–MnOx mixed oxides and catalytic performance under oxygen-rich condition. Catal. Today, 126(3-4): 430-435
Yang, Z., Woo, T.K., Hermansson, K. (2006) Effects of Zr doping on stoichiometric and reduced ceria: A first-principles study. J. Chem. Phy., 124(22): 224704
Yang, Z., Luo, G., Lu, Z., Hermansson, K. (2007) Oxygen vacancy formation energy in Pd-doped ceria: A DFT+ U study. J. Chem. Phy., 127(7): 074704
Zhang, T.Y., Wang, S.P., Yu, Y., Su, Y., Guo, X.Z., Wang, S.R., Zhang, S.M., Wu, S.H. (2008) Synthesis, characterization of CuO/Ce0. 8Sn0. 2O2 catalysts for low-temperature CO oxidation. Catal. Communicat., 9(6): 1259-1264
Zhou, G., Shah, P.R., Kim, T., Fornasiero, P., Gorte, R.J. (2007) Oxidation entropies and enthalpies of ceria–zirconia solid solutions. Catal. Today, 123(1-4): 86-93
Zhou, Y., Zhou, J. (2010) Growth and surface structure of Ti-doped CeO x (111) thin films. J. Phy. Chem. Let., 1(11): 1714-1720
DOI: https://doi.org/10.24114/jmns.v1i1.28466
Article Metrics
Abstract view : 138 timesPDF - 69 times
Refbacks
- There are currently no refbacks.
Editorial Office:
Faculty of Mathematics and Natural Sciences-Universitas Negeri Medan
Jl. Willem Iskandar / Pasar V, Medan, Sumatera Utara – Indonesia
Kotak Pos 1589, Kode Pos 20221
Telp. +6285260614736
E-mail : jmns@unimed.ac.id
Journal of Mathematics and Natural Sciences is licensed under a Creative Commons Attribute 4.0 Internasional Licence.