Surface science approach of MnO-CeOx(111) mixed oxide

Elfrida Ginting

Abstract


Ceria has unique abilities that makes it possible to be used as catalyst supports. The abilities of ceria are to store and release oxygen and easy transformation of Ce+4 to Ce+3 and vice versa Ceria as a catalyst support, showed a disadvantage over high temperature. The purpose of the paper is finding the right recipe for growing Mn-ceria mixed oxide. STM, XPS and LEED were used to acquire fundamental information. LEED experiments from Mn doped ceria mixed oxide specified that the films is well ordered. The LEED results is showing six spots that indicated the well ordered film and follow the (111) plane. Furthermore, for Mn doped ceria mixed oxide, there is no disctinct difference between higher stoichiometry and lower stoichiometry mixed oxide. But between higher and lower percentage of Mn, it has different structure. The triangle islands from higher Mn mixed oxide is MnO follow (111) plane. For both lower and higher Mn, oxygen vacancies can be recognized in reduced films.


Full Text:

PDF

References


Avgouropoulos, G., Ioannides, T., Matralis, H. (2005) Influence of the preparation method on the performance of CuO–CeO2 catalysts for

the selective oxidation of CO. Appl. Catal. B: Environ., 56(1-2): 87-93

Barth, C., Laffon, C., Olbrich, R., Ranguis, A., Parent, P., Reichling, M. (2016) A perfectly stoichiometric and flat CeO 2 (111) surface on a bulk-like ceria film. Scient. rep., 6(1): 1-6

Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W., Gerson, A.R., Smart, R.S. C. (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci., 257(7): 2717-2730

Fu, Q., Saltsburg, H., Flytzani-Stephanopoulos, M. (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 301(5635): 935-938

Gandhi, H. S., Graham, G., McCabe, R. (2003) Automotive exhaust catalysis. J. Catal., 216(12): 433-442

Ginting, E., Hu, S., Thorne, J.E., Zhou, Y., Zhu, J., Zhou, J. (2013) Interaction of Mn with reducible CeO2 (1 1 1) thin films. Appl. Surf. Sci., 283: 1-5

Ginting, E., Peterson, E. W., Zhou, J. (2016) Scanning tunneling microscopy studies of Mn-doped CeOx (111) interfaces. Appl. Catal. B: Environ., 197: 337-342

Heger, E.A.K.A.G. (1999) The structures of CCe2O3+δ, Ce7O12, and Ce11O20. J. Sol. Sta. Chem., 147: 16

Horcas, I., Fernández, R., Gomez-Rodriguez, J.M., Colchero, J.W.S.X., Gómez-Herrero, J.W.S.X.M., Baro, A.M. (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Scient. Instr., 78(1): 013705

Kaneko, H., Miura, T., Ishihara, H., Taku, S., Yokoyama, T., Nakajima, H., Tamaura, Y. (2007) Reactive ceramics of CeO2–MOx (M= Mn, Fe, Ni, Cu) for H2 generation by two-step water splitting using concentrated solar thermal energy. Energy, 32(5): 656-663

Kašpar, J., Fornasiero, P., Hickey, N. (2003) Automotive catalytic converters: current status and some perspectives. Catal. Today, 77(4): 419-449

Larachi, F., Pierre, J., Adnot, A., Bernis, A. (2002) Ce 3d XPS study of composite CexMn1− xO2− y wet oxidation catalysts. Appl. Surf. Sci., 195(14): 236-250

Lee, J.G., Park, J.H., Shul, Y.G. (2014) Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm− 2 at 550 C. Nat.

Communicat., 5(1): 1-10

Liang, Q., Wu, X., Weng, D., Xu, H. (2008) Oxygen activation on Cu/Mn–Ce mixed oxides and the role in diesel soot oxidation. Catal. Today, 139(1-2): 113-118

Liu, C., Luo, L., Lu, X. (2008) Preparation of mesoporous Ce 1− x Fe x O 2 mixed oxides and their catalytic properties in methane combustion. Kinet. Catal., 49(5): 676-681

Liu, Z., Ding, D., Liu, M., Ding, X., Chen, D., Li, X., Xia, C., Liu, M. (2013) High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures. J. Pow. Sour., 241: 454-459

Machida, M., Uto, M., Kurogi, D., Kijima, T. (2000) MnO x− CeO2 Binary Oxides for Catalytic NO x Sorption at Low Temperatures. Sorptive Removal of NO x. Chem. Mat., 12(10): 3158-3164

Mullins, D.R., Radulovic, P.V., Overbury, S.H. (1999) Ordered cerium oxide thin films grown on Ru (0001) and Ni (111). Surf. Sci., 429(1-3): 186-198

Nakayama, M., Martin, M. (2009) First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations. Phy. Chem. Chem. Phy., 11(17): 3241-3249

Naumkin, A.V., Kraut-Vass, A., Gaarenstroom, S.W., Powell, C.J. (2012) NIST standard reference database 20, version 4.1. Nat. Inst. Stand. Technol. NIST, 1: 1-49

Nolan, M., Grigoleit, S., Sayle, D.C., Parker, S.C., Watson, G.W. (2005a) Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria. Surf. Sci., 576(1-3): 217-229

Nolan, M., Parker, S.C., Watson, G.W. (2005b) The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Sur. Sci., 595(1-3): 223-232

Pozdnyakova, O., Teschner, D., Wootsch, A., Kröhnert, J., Steinhauer, B., Sauer, H., Toth, L., Jentoft, F.C., Knop-Gericke, A., Paal, Z., Schlögl, R. (2006) Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism. J. Catal., 237(1): 17-28

Priolkar, K.R., Bera, P., Sarode, P.R., Hegde, M.S., Emura, S., Kumashiro, R., Lalla, N.P. (2002) Formation of Ce1-x Pd x O2-δ Solid Solution in Combustion-Synthesized Pd/CeO2 Catalyst: XRD, XPS, and EXAFS Investigation. Chem. Mat., 14(5): 2120-2128

Qi, G., Yang, R.T. (2003) Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx–CeO2 catalyst. J. Catal., 217(2): 434-441

Qi, G., Yang, R.T. (2004) Characterization and FTIR studies of MnO x− CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. J. Phy. Chem. B, 108(40): 15738-15747

Senanayake, S.D., Mudiyanselage, K., Bruix, A., Agnoli, S., Hrbek, J., Stacchiola, D., Rodriguez, J.A. (2014) The unique properties of the oxide-metal interface: reaction of ethanol on an inverse model CeO x–Au (111) catalyst. J. Phy. Chem. C, 118(43): 25057-25064

Shah, P.R., Kim, T., Zhou, G., Fornasiero, P., Gorte, R.J. (2006) Evidence for entropy effects in the reduction of ceria− zirconia solutions. Chem. Mat., 18(22): 5363-5369

Song, Z., Liu, W., Nishiguchi, H., Takami, A., Nagaoka, K., Takita, Y. (2007) The Pr promotion effect on oxygen storage capacity of Ce–Pr oxides studied using a TAP reactor. Appl. Catal. A: Gen., 329: 86-92

Sun, C., Li, H., Chen, L. (2012) Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci., 5(9): 8475-8505

Tabakova, T., Avgouropoulos, G., Papavasiliou, J., Manzoli, M., Boccuzzi, F., Tenchev, K., Vindigni, F., Ioannides, T. (2011a) CO-free hydrogen production over Au/CeO2–Fe2O3 catalysts: Part 1. Impact of the support composition on the performance for the preferential CO oxidation reaction. Appl. Catal. B: Environ., 101(3-4): 256-265

Tabakova, T., Manzoli, M., Paneva, D., Boccuzzi, F., Idakiev, V., Mitov, I. (2011b) CO-free hydrogen production over Au/CeO2–Fe2O3 catalysts: Part 2. Impact of the support composition on the performance in the water-gas shift reaction. Appl. Catal. B: Environ., 101(3-4): 266-274

Tang, Y., Zhang, H., Cui, L., Ouyang, C., Shi, S., Tang, W., Li, H., Lee, J., Chen, L. (2010) First-principles investigation on redox properties of M-doped CeO 2 (M= Mn, Pr, Sn, Zr). Phy Rev. B, 82(12): 125104

Trovarelli, A. (1996) Catalytic properties of ceria and CeO2-containing materials. Catal. Rev., 38(4): 439-520

Trovarelli, A. (2002) Catalysis by ceria and related materials (Vol. 2). World Scientific Publishing Co. Pte. Ltd., 5 Toh Tuck Link, Singapore 596224

Vickers, S.M., Gholami, R., Smith, K.J., MacLachlan, M.J. (2015) Mesoporous Mn-and La-doped cerium oxide/cobalt oxide mixed metal catalysts for methane oxidation. ACS Appl. Mat. Interf., 7(21): 11460-11466

Wagner, C.D., Davis, L.E., Zeller, M.V., Taylor, J.A., Raymond, R.H., Gale, L.H. (1981) Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interf Anal., 3(5): 211-225

Wu, X., Liang, Q., Weng, D., Fan, J., Ran, R. (2007) Synthesis of CeO2–MnOx mixed oxides and catalytic performance under oxygen-rich condition. Catal. Today, 126(3-4): 430-435

Yang, Z., Woo, T.K., Hermansson, K. (2006) Effects of Zr doping on stoichiometric and reduced ceria: A first-principles study. J. Chem. Phy., 124(22): 224704

Yang, Z., Luo, G., Lu, Z., Hermansson, K. (2007) Oxygen vacancy formation energy in Pd-doped ceria: A DFT+ U study. J. Chem. Phy., 127(7): 074704

Zhang, T.Y., Wang, S.P., Yu, Y., Su, Y., Guo, X.Z., Wang, S.R., Zhang, S.M., Wu, S.H. (2008) Synthesis, characterization of CuO/Ce0. 8Sn0. 2O2 catalysts for low-temperature CO oxidation. Catal. Communicat., 9(6): 1259-1264

Zhou, G., Shah, P.R., Kim, T., Fornasiero, P., Gorte, R.J. (2007) Oxidation entropies and enthalpies of ceria–zirconia solid solutions. Catal. Today, 123(1-4): 86-93

Zhou, Y., Zhou, J. (2010) Growth and surface structure of Ti-doped CeO x (111) thin films. J. Phy. Chem. Let., 1(11): 1714-1720




DOI: https://doi.org/10.24114/jmns.v1i1.28466

Article Metrics

Abstract view : 138 times
PDF - 69 times

Refbacks

  • There are currently no refbacks.


Editorial Office:
Faculty of Mathematics and Natural Sciences-Universitas Negeri Medan
Jl. Willem Iskandar / Pasar V, Medan, Sumatera Utara – Indonesia
Kotak Pos 1589, Kode Pos 20221
Telp. +6285260614736
E-mail : jmns@unimed.ac.id

Lisensi Creative Commons
Journal of Mathematics and Natural Sciences is licensed under a Creative Commons Attribute 4.0 Internasional Licence.