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ABSTRACT

Heavy metal contamination in aquatic environments poses a serious environmental and public health concern,
requiring analytical methods that are sensitive, selective, and suitable for on-site analysis. Voltammetry
electrochemical sensors have emerged as a promising alternative to conventional techniques due to their low
cost, portability, rapid response, and high sensitivity. Graphene, with its high surface area, excellent electrical
conductivity, and chemical stability, has been widely utilized as an electrode material to enhance sensor
performance. However, pristine graphene often exhibits limited selectivity toward specific metal ions. To
address this limitation, various surface modification strategies have been developed, including
functionalization with chelating ligands, ion-selective polymers, nanoparticles, and composite materials. This
review provides a comprehensive overview of recent advances in modified graphene-based voltammetry
sensors for heavy metal detection in water samples, covering voltammetry principles, graphene modification
strategies, analytical performance, and practical environmental applications.
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1. INTRODUCTION

Water covers almost 71% of the earth's parts and its existence is essential for living beings. However,
many aquatic environments have been polluted by anthropogenic activities such as settlements, industry, and
agriculture '. Of the various pollutants that pollute the waters, heavy metals are one of the most worrisome.
The term heavy metal refers to metals that have a density of more than 5g/mL or solid metal elements that are
toxic in small concentrations. Heavy metals continue to represent a significant risk to human health and
environmental sustainability due to their inherent resistance to natural degradation. This characteristic allows
them to endure in ecosystems for extended periods potentially centuries leading to their progressive
accumulation within biological food webs >*. Consequently, the precise measurement of heavy metal
concentrations in water, particularly at trace levels, is critically important for safeguarding human health and
maintaining ecological balance.

Conventional analytical techniques such as inductively coupled plasma-mass spectrometry (ICP-MS)
6 atomic absorption spectroscopy (AAS) 7%, and X-ray fluorescence (XRF) * ' are widely employed for heavy
metal detection due to their high sensitivity and accuracy. However, their practical application is often
constrained by high operational costs, bulky instrumentation, time-consuming procedures, and limited
suitability for on-site analysis.

In contrast, electrochemical sensing platforms, particularly voltammetry sensors, have emerged as
attractive alternatives owing to their portability, rapid response, low cost, and compatibility with in-situ
measurements ''. Despite these advantages, the analytical performance of voltammetry sensors in complex
water matrices is frequently limited by insufficient sensitivity and poor selectivity toward specific metal ions,
highlighting the need for advanced electrode materials >4,

Among various electrode materials, graphene-based materials have attracted considerable interest due
to their high surface area and excellent electrical conductivity, which are advantageous for enhancing electron
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transfer and signal amplification in voltammetric sensing '>"'’. Nevertheless, pristine graphene often exhibits
limited metal-ion recognition capability, necessitating further surface modification to achieve selective and
sensitive detection.

To address these challenges, diverse graphene modification strategies including oxidation, heteroatom
doping '®, functionalization with chelating ligands or polymers '**°, and hybridization with metal nanoparticles
or other functional materials have been extensively explored 2'. These approaches have demonstrated markedly
different effects on analytical performance, such as detection limits, sensitivity, selectivity, and operational
stability, indicating that no single modification strategy is universally optimal.

This review evaluates recent advances in modified graphene-based voltammetry sensors for heavy metal
detection in water samples, with particular emphasis on comparative performance analysis, emerging
performance trends, key advantages and limitations of different modification strategies, and existing research
gaps that must be addressed to facilitate practical environmental applications.

2. THEORETICAL BASIS: VOLTAMMETRY TECHNIQUES

Voltammetry is an electroanalytical technique that identifies and quantifies electroactive species by
monitoring current responses as a function of an applied potential. Originating from polarography developed
by Jaroslav Heyrovsky in the early 20™ century, voltammetry has evolved significantly with the decline of
mercury-based electrodes due to environmental and safety concerns, giving rise to modern solid-state and
nanomaterial-modified electrodes *.

A voltammetric system typically consists of three electrodes: a working electrode, a reference electrode,
and a counter electrode. Among these, the working electrode is the critical component where redox reactions
of the target analyte occur. The magnitude of the measured current is governed by electron transfer kinetics,
mass transport, and surface interactions at the electrode solution interface **. Consequently, the
physicochemical properties of the working electrode surface play a decisive role in analytical performance.

Voltammetry offers several advantages over conventional spectroscopic techniques such as AAS and
ICP-OES, including high sensitivity, low instrumental cost, wide linear dynamic range, portability, and
potential for in situ and real-time monitoring ***’. There are several examples of heavy metal determination
that have been reported such as ** successfully developed ultrasensitive electrochemical sensors based on
chitosan-mediated Fe-Al MMON nanocomposites for simultaneous detection of Pb**, Cd*", and Hg2+ at the
parts per trillion level. The DPV method shows the highest sensitivity with good detection limits. The sensor
has also been successfully applied its practical potential in water quality monitoring. In addition, a
straightforward yet highly effective electrochemical sensor based on voltammetry has been successfully
developed. This sensor is capable of simultaneously detecting four hazardous heavy metals in water and
exhibits excellent sensitivity and stability. It can detect cadmium (Cd**) at 0.4 ppb, lead (Pb*") at 2.5 ppb,
copper (Cu2*) at 7.3 ppb, and mercury (Hg?") at 0.7 ppb %.

The analytical performance of voltammetric sensors is commonly evaluated using parameters such as

limit of detection (LOD), sensitivity, selectivity, linearity, stability, and reproducibility ***'. Among these,
sensitivity and selectivity are most strongly influenced by the surface characteristics of the working electrode.
In this context, electrode modification with nanostructured materials has emerged as an effective strategy to
enhance electron transfer, increase active surface area, and introduce selective binding sites **~*°. Graphene
and its derivatives have attracted particular attention as electrode modification materials due to their
exceptional electrical conductivity, high surface area, mechanical stability, and ease of functionalization. When
integrated into voltammetric systems, graphene-modified electrodes significantly improve current response,
lower detection limits, and enhance selectivity toward heavy metal ions, especially when combined with metal
nanoparticles, polymers, or metal-organic frameworks. As a result, graphene-based voltammetric sensors
represent a powerful and promising platform for sensitive and selective heavy metal detection in environmental
water samples.

3. GRAPHENE AND ITS MODIFICATIONS

Graphene is a two-dimensional (2D) nanomaterial consisting of a single atomic layer of carbon atoms
arranged in a hexagonal honeycomb lattice *’. Each carbon atom possesses four valence electrons, three of
which participate in strong in-plane sp? hybridized bonding, while the remaining electron contributes to a
delocalized m-electron system above and below the graphene plane *. This unique electronic structure endows
graphene with exceptional properties, including high surface area, excellent electrical conductivity, and
outstanding mechanical strength *>*°. These characteristics make graphene particularly attractive as a working
electrode material in voltammetric sensing applications.

Graphene can be engineered into various structural forms, such as graphene nanoribbons, nanosheets,
nanoplates, and three-dimensional (3D) graphene architectures *'. While these structural variations influence
electrochemical behavior, comparative studies systematically correlating graphene morphology with sensor
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performance parameters such as sensitivity, selectivity, and stability remain limited. This lack of standardized
comparison makes it difficult to identify the most effective graphene configuration for practical heavy metal
detection.

To enhance the analytical performance of graphene-based voltammetric sensors, surface modification is
essential. Such modifications aim to improve not only sensitivity and electron transfer efficiency, but also
selectivity, operational stability, and applicability in real water samples. Common strategies include
functionalization with selective ligands, polymer coatings, incorporation of metal or metal oxide nanoparticles,
and formation of graphene-based composites. However, many studies primarily emphasize improved detection
limits without providing comprehensive comparisons of selectivity, reproducibility, and long-term
performance.

3.1 Modification with Chelating Ligands

One of the key approaches to improving the performance of graphene-based voltammetric sensors is
surface modification using chelating ligands **. Chelating ligands are molecules or ions containing multiple
donor atoms, such as oxygen, nitrogen, or sulfur, which can simultaneously coordinate metal ions to form
stable complexes. The selection of an appropriate chelating ligand is therefore crucial, as its affinity and
specificity directly govern sensor selectivity **. Numerous chelating ligands have been successfully integrated
with graphene-based materials to enhance sensor sensitivity, selectivity, and practical applicability. DMG-
functionalized Nafion graphene electrodes exhibit excellent selectivity and ultra-trace detection of Ni** (LOD
1.5 pg L") due to strong and specific Ni-DMG complexation, although their application is largely limited to
single-analyte detection *. In contrast, EDTA-functionalized reduced graphene oxide sensors enable the
simultaneous detection of multiple metal ions, such as Pb** and Cd**, with low detection limits (1.02 and 2.52
ppb, respectively) and good stability (>90% signal retention), demonstrating greater versatility for
environmental monitoring *. Similarly, rGO-TTU-based sensors show high sensitivity and low limits of
detection for Hg?* (0.02 mg L), together with strong selectivity and recyclability *°.
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Figure 1. Mechanism of Ni(II) detection using a glassy carbon electrode modified with a Nafion—graphene—
dimethylglyoxime nanocomposite. **

3.2 Modification with Ion-Selective Polymers

Applying ion-selective polymers as coatings on graphene has proven effective in enhancing voltammetric
sensor performance; however, their analytical characteristics strongly depend on the polymer type and
functionalization strategy employed. lon-imprinted polymer (IIP)-graphene sensors, such as CS/GO-IIP
systems, exhibit high selectivity and good reproducibility toward single target ions (e.g., Cu?"), with moderate
detection limits (0.15 pmol/L), but their applicability is generally restricted to specific analytes due to the
imprinting process *’. Conductive polymer-graphene composites, including polyglycine- and polyaniline-
based electrodes, offer broader applicability by improving electron transfer kinetics and increasing
electroactive surface area, enabling simultaneous or multi-ion detection of Hg?* and Pb** with comparable or
lower detection limits (down to sub-uM or ppb levels) and successful implementation in real water and
biological samples **. Biopolymer-based graphene sensors, particularly those functionalized with chitosan,
demonstrate superior sensitivity for Pb*" detection, achieving ultra-low detection limits (as low as 0.05 ppb);
however, their performance tends to be more susceptible to matrix interferences due to nonspecific interactions
*_ Furthermore, hybrid systems combining conductive polymers, graphene oxide, and chelating agents, such
as PANI/GO/EDTA composites, integrate efficient electron transfer, enlarged active surface area, and strong
metal-ligand complexation, resulting in low charge-transfer resistance, high electrochemical stability, and
enhanced selectivity toward Hg>* with detection limits reaching 1 ppb, below the EPA regulatory threshold *.
Overall, these comparisons highlight the trade-off between selectivity, versatility, sensitivity, and practical
applicability among different polymer—graphene sensor architectures.
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Figure 2. Illustrative schematic of the preparation process and detection mechanism of polyanalline polymer modified
electrode *°.

3.3 Modification with Nanoparticles

A comparative evaluation of graphene—nanoparticle-based voltammetric sensors highlights clear
differences in analytical performance depending on the nanoparticle system and electrode architecture. The 3D
GF/BiNP framework exhibits excellent sensitivity for Pb** and Cd** with very low detection limits (0.02 and
0.05 pg L', respectively), along with good stability and reproducibility, making it suitable for multi-metal
detection at trace levels *'. rGO/AgNPs-based sensors achieve ultra-low LODs down to the femtomolar—
zeptomolar range for Cu?**, Cd**, and Hg*", benefiting from strong synergistic effects between graphene
conductivity and AgNP catalytic activity; however, reports on long-term stability and performance in complex
real matrices remain limited *. In contrast, FesOa/graphene-modified carbon paste electrodes offer balanced
performance, combining low ng L' detection limits, good selectivity against interfering ions, high
reproducibility (RSD < 5.25%), and demonstrated applicability across diverse real samples including tap,
bottled, river, and seawater 3. Similarly, AgNPs/GrNPs-modified graphite electrodes enable the simultaneous
detection of Cd**, Cu**, and Pb*" with low detection limits of 59, 44, and 55 ng L for Pb(Il), Bi(Ill), and
Cu(ID), respectively. The sensor exhibits good selectivity in the presence of potentially interfering metal ions
and maintains stable performance for up to 30 days in tap water samples, underscoring its strong practical
applicability >4,
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Figure 3. Illustration of electrode sensor modified with graphene nanoplate & silver nanoparticles 3.

3.4 Modification with Composite Materials

Various graphene-based composite materials have been extensively investigated to enhance
electrochemical sensor performance across a wide range of applications, from biomarker detection to heavy
metal monitoring. These improvements primarily arise from the synergistic integration of graphene’s high
electrical conductivity and large surface area with the complementary chemical or structural functionalities of
secondary materials.

For example, electrochemically modified graphene/bismuth nanocomposite electrodes exhibit strong
capability for the simultaneous detection of Zn?*, Cd**, and Pb** using stripping voltammetry, achieving low
detection limits (1.80 pg/L for Zn**, 0.18 pg/L for Cd**, and 0.11 pg/L for Pb**) and wide linear ranges (1-100
pg/L). This performance is attributed to the alloy-forming ability of bismuth with heavy metals, which
enhances stripping efficiency, combined with graphene’s role in improving surface area and electron transfer
55

Further improvements in sensitivity and practical applicability have been demonstrated using micro-
patterned rGO/CNT composite electrodes. These sensors enable independent detection of Cd** and Pb*' in
drinking water with detection limits of 0.6 ppb and 0.2 ppb, respectively, while maintaining good stability and
reliability, highlighting their suitability for real-sample analysis *.

In addition, graphene-based composites integrated with hydrosulfonyl (—SH) functionalized covalent
organic frameworks (COFs) offer enhanced selectivity and sensitivity toward Cd**, Pb*", Cu**, and Hg*" ions
due to strong sulfur—metal coordination. These sensors achieve low detection limits (0.2—1.1 pg/L), good
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stability (signal variation <5%), and high recoveries (>95%) in real sample analysis, demonstrating promising
potential for coastal and environmental monitoring applications *’.

Similarly, a three-dimensional hybrid rGO/MWCNTs-COOH network fabricated on screen-printed
carbon electrodes provides a highly conductive and vertically oriented structure that facilitates efficient
electron transfer and simultaneous adsorption of Cd*" and Pb*" ions. With the additional stabilization from
Nafion coating and in-situ bismuth film formation, this sensor delivers ultra-low detection limits (0.04 pg/L
for Cd** and 0.02 pg/L for Pb*") over a broad concentration range (0.1-1350 pg/L), and its performance has

been successfully validated in tap water and lake samples >*.
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Despite the enhanced analytical performance achieved by modified graphene-based voltammetry sensors.
Several key challenges continue to limit their practical application for heavy metal detection in real water
samples. Matrix effects remain a major concern, as natural organic matter, dissolved salts, and coexisting metal
ions can compete with surface-bound chelating ligands or block active sites, resulting in signal suppression
and peak distortion. Reproducibility is another critical issue, particularly for nanoparticle and composite-
modified graphene electrodes, where variations in graphene quality, modifier loading, and fabrication
protocols often lead to inconsistent sensor responses and batch-to-batch variability. Furthermore, long-term
operational stability remains challenging due to ligand desorption, polymer degradation, nanoparticle
aggregation, and electrochemical oxidation of graphene during prolonged cycling, which can significantly
reduce sensor sensitivity over time. These limitations highlight the need for more robust surface
immobilization strategies, standardized fabrication methods, and systematic long-term stability evaluations
under realistic environmental condition *°.

3.5 Modified Graphene Sensor Applications for Heavy Metal Detection

Graphene modification has proven to be a very effective approach in developing voltammetry sensors for
heavy metal detection. The superior properties of graphene, such as large surface area and high electrical
conductivity, can be further enhanced by the incorporation of other materials that have specific affinities for
certain heavy metal ions. This modification strategy allows for increased sensitivity, selectivity, and lowering
of the detection limits of voltammetry sensors, making it a promising tool for water quality monitoring and
environmental analysis. The following table summarizes some examples of applications of modified graphene-
based voltammetry sensors specifically designed for the detection of various heavy metal ions, based on the
sources discussed.
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Table 1. Applications of Modified Graphene-Based Voltammetry Sensors for Heavy Metal Ion Detection

No. | Modified Electrode Target Voltmetry Detection Limit Selectivity Sample Ref.
Material Analytics Method (LOD)
1 GCE/graphene-Bi Zn(Ily differential Zn(Il) = 1.80 pg/L. | Selective against Cd(II), Zn(Il) and Environmental »
Cd(n), pulse anodic Cd(II) = 0.18 pg/L | Pb(II) despite the presence of water
Pb(1l) Stripping Pb(I[) =0.11 pg/L | interfering ions (Fe(IIl), Co(I),
voltammetry Ni(Il), Mn(II), Cu(II), and Cr(III))
(DPASYV)

2 Modified Au Cd(n), differential Cd(I) =2.8 nM The sensor detects Cd(II), Pb(Il), River water and 60
Electrode Pb(II), pulse Pb(Il) = 1.41 nM As(IIT) and Hg(II) simultaneously tap water
[Ru(bpy);]>*-GO As(IIT) voltammetry As(Ill) =2.3 nM Without intqference demqnstrating

Hg(II) (DPV) Hg(Il) = 1.6 nM high se.lect1V1ty for multi-ion
analysis.

3 CPE/Fe304 NPs- Pb(1D), Square-wave Pb(1l)= 59 ng/L Selective in detecting Pb(Il), Tap water, some >3
Graphene Bi(IlD) | anodic stripping Bi(III)= 44 ng/L. | Bi(IlI), and Cu(II) despite the samples of bottled

Cu(ID) voltammetry Cu(I)= 55 ng/L presence of various other ions—as mineral water, as
(SW-ASV) long as there is no EDTA or Triton | well as river and
X-100 in high concentrations. sea water samples

4 Electrode Cd (1), Cu square wave Cd(Il) = 5.0 ng Highly selective and capable of Tap water >4
Graphite/AgNPs/G | (II), Pb () | anodic stripping Cu(ll)=4.1ng | detecting Cd(II), Pb(II), and Cu(II)

NPs voltammetry Pb(Il) = 1.0 ng simultaneously without interference
(SWASV) from other metal ions

5 Electrode Laser- Cd(n Square Wave Cd(II) and Pb(II) are | There is a decrease in selectivity if Drinking water o
Induced Graphene Pb(1I) Anodic 0.4 pg/L Bi(III) is added above 1000 pg/L. and tap water
Fiber (LIGF) Stripping

Voltammetry
(SWASV)
6 GCE/rGO-Ti:CTy Cd(1n Pulse Voltage Cd*: Ti:C.Tx—1GO sensor is selective Lake water and 62
Cu(ID) Differential LOD =0.31 nM against Cd*" and Cu** despite the tap water
(DPV) LOQ =1.02 nM presence of interfering ions
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Cu:
LOD =0.18 nM
LOQ=0.62 nM
7 GCE/LSG/PB- Cd(I) Pulse Voltage Cd(I)=0.85nM Selectively detects Cd?** despite 10% Tap water and 63
PEDOT Differential concentrations of Mn?*, Pb?*, Ca?*, wastewater
(DPV) and Zn" ions samples
8 Thymine-GO- Hg** Differential Linear detection range: | Response to Hg*" & Cr6* remained | Standard solution; 64
Carbohydrazide (Mercury) | pulse above 5 ppb for both | stable despite bismuth disturbance Intended for
(T-GO-C) Voltammetry ions applications in
cre (DPV) or drinking water or
(Chrome
Hexaval) Square Wave fields
Voltammetry
(SWV)
9 GCE/rGO/Au-Bi Pb(II) Differential Pb*>"=0.05 uM Selective despite the presence of River water 6
Cd(1l) Pulse Anodic Cd* =0.02 uM interfering ions (K*, Ca*", Fe'',
Stripping Fe?" Co*, A", Mg*, Mn*', Ni*",
Voltammetry and Hg*") except Cu?* which
(DPASV) degrades the signal
10 Graphene Epitaxial Cd(I) Square Wave Detection can be Real seawater 66
(EG) electrqde on Cu(ID) Voltammetry performed from 100
Sll}COIl carbide Hg(H) (CSWV) 200 ppb
(SiC) substrate Pb(II)
11 PV A/Chitosan- Pb (II) square wave 0.05 ppb selective to Pb*" at 50 ppb despite Rivers and 49
TRG/GCE) anodic stripping the presence of interfering ions with seawater
voltammetry double concentrations.
(SWASV)
12 GCE/GR/GO CD (II) differential 0.087 uM selective to Cd?" in the presence of Tap water 67
pulse interfering ions, except Pb** which
voltammetry causes interference
(DPV)
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CONCLUSION

Modification strategies for graphene-based sensors demonstrates that while chelating ligands and ion-

imprinted polymers offer exceptional selectivity for single analytes, nanoparticle-based composites provide

superior sensitivity for simultaneous multi-metal detection. Despite these achievements, significant challenges

remain regarding matrix interference and long-term electrochemical stability. Future research must prioritize

the development of standardized fabrication protocols and robust covalent functionalization to ensure sensor

reliability in complex environmental matrices, ultimately enabling the deployment of cost-effective, portable
devices for real-time water quality monitoring.
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