The Improvement of Mechanical Properties of PCL/Microcellulose Biocomposites from Corn Cobs by Adding PCLacac as a Compatibilizer

Authors

  • Muhammad Yusuf Department of Chemistry, Universitas Negeri Medan https://orcid.org/0000-0002-2119-6490
  • Bagus Kurniawan Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, 20221, Indonesia
  • Nurfajriani Nurfajriani Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, 20221, Indonesia
  • Rudi Munzirwan Siregar Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, 20221, Indonesia
  • Innayah Wulandari

DOI:

https://doi.org/10.24114/ijcst.v9i1.72145

Keywords:

Biocomposite, cellulose, compatibilizer, corn cob, PCL

Abstract

Biocomposites have wide potential in eco-friendly packaging, agriculture, and biomedical applications such as scaffolds and drug delivery. This study uses poly(ε-caprolactone) (PCL) as a biocompatible, flexible matrix and microcellulose from corn cobs as a renewable, abundant, and low-cost filler. The PCL–microcellulose combination is expected to improve mechanical properties while adding value to agricultural waste. To enhance compatibility between matrix and filler, short-chain synthetic PCL (PCLacac) was added at 0%, 2.5%, 7.5%, and 10%. Serving as a compatibilizer, PCLacac promotes interaction with cellulose hydroxyl groups. The prepared biocomposites were molded according to ASTM D638 standards and characterized. Tensile results showed that the addition of 2.5% PCLacac gave the highest increase in tensile strength. FTIR analysis confirmed hydrogen bonding between PCL carbonyl and cellulose hydroxyl groups, indicated by absorption band shifts. Thus, optimal PCLacac addition (2.5%) enhances mechanical performance and transforms low-value corn cob waste into high-value biocomposites.

References

1. Salim S, Rihayat T, Aidy N, Setiawati E. (2021). Preparasi Biokomposit Kombinasi Poli Asam Asam Laktat-Poli Kaprolakton Dengan Menambah Catechin Dan Kitosan Sebagai Agen Antibakteripengolahan. J Sains dan Teknol Reaksi. 19(02):1-5. doi:10.30811/jstr.v19i02.2486.

2. Diana L, Ghani Safitra A, Nabiel Ariansyah M. (2020). Analisis Kekuatan Tarik pada Material Komposit dengan Serat Penguat Polimer. J Engine Energi, Manufaktur, dan Mater. 4(2):59-67.

3. Suryani, Rihayat T, Nurhanifa, et al. (2020). Green composites of natural fiber bamboo/pineapple leaf/coconut husk as hybrid materials. IOP Conf Ser Mater Sci Eng. 788(1). doi:10.1088/1757-899X/788/1/012038

4. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S. (2018). Characterization and Properties of Natural Fiber Polymer Composites: A Comprehensive Review. Journal of Cleaner Production 172 : 566-581. doi:10.1016/j.jclepro.2017.10.101

5. Maryam M, Rahmad D, Yunizurwan Y. (2019). Sintesis Mikro Selulosa Bakteri Sebagai Penguat (Reinforcement) Pada Komposit Bioplastik Dengan Matriks PVA (Poli Vinil Alcohol). J Kim dan Kemasan. 41(2):110. doi:10.24817/jkk.v41i2.4055

6. Pickering KL, Efendy MGA, Le TM. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf. 83:98-112. doi:10.1016/j.compositesa.2015.08.038

7. Munzirwan Muhammad Yusuf; Utama, Erwinsyah RMY. (2024). An Investigation of the Functional Groups and Structure Characteristics of a Polymer Blend of Polystyrene and Poly(ε-Caprolactone) Produced by Using Bis(Dibenzoylmethanato)Zirconium(IV) Chloride Catalyst. Indones J Chem Sci Technol. 7(2): 128-133.

8. Yusuf M, dan Mawaddatur R. (2023). Mechanical and Morphology Properties of Polyblelend Polypropylene with Poly(ε-Caprolactone) that Synthesized using Zr β-Diketonate Catalyst as a Material Candidate for the Manufacture of Surgical Sutures. J Sains Kes. 5(3):388-393. doi:https://doi.org/10.25026/jsk.v5i3.1865

9. Yusuf M, Roza D, Nurfajriani, Gunawan H, Dari N. (2019). Synthesis of bis(β-diketonato)zirconium (iv) chloride as a catalyst in the ring opening polymerizations of ε-caprolactone. Rasayan J Chem. 12(4):2132-2140. doi:10.31788/RJC.2019.1245463

10. Lani NS, Ngadi N, Johari A, Jusoh M. (2014). Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites. J Nanomater. doi:10.1155/2014/702538

11. Gea S, Andita D, Rahayu S, Nasution DY, Rahayu SU, Piliang AF. (2018). Preliminary study on the fabrication of cellulose nanocomposite film from oil palm empty fruit bunches partially solved into licl/dmac with the variation of dissolution time. J Phys Conf Ser. 1116(4). doi:10.1088/1742-6596/1116/4/042012.

Downloads

Published

2026-01-31