Utilization of Coconut Shell Activated Carbon as an Eco-Friendly Adsorbent for Cu(II) Remediation in a Continuous Column System
DOI:
https://doi.org/10.24114/ijcst.v9i1.72307Keywords:
activated carbon, coconut shell, adsorption, continuous column systemAbstract
Copper (II) contamination in aquatic environments poses severe toxic risks. This study investigates the use of coconut shell-activated carbon as an eco-friendly adsorbent for Cu(II) remediation in a continuous column system. Coconut shell was prepared via carbonization at 400–500°C, followed by 0.1 M NaOH activation. FTIR and SEM analysis confirmed the presence of active functional groups (O–H, C=O, C–O) and a porous morphology suitable for ion diffusion. Continuous adsorption trials, conducted at a flow rate of 25 mL/min with 100 mg/L Cu(II), showed that performance increased with contact time. The system achieved a maximum adsorption capacity of 2.390 mg/g and 15.948% effectiveness at 25 minutes. Consequently, coconut shell-activated carbon demonstrates significant potential as a cost-effective adsorbent for continuous heavy-metal wastewater treatment. Keywords: Activated Carbon, Coconut Shell, Adsorption, Continuous Column SystemReferences
1. Anggriani, U. M., Hasan, A., & Purnamasari, I. (2021). Kinetika Adsoprsi karbon Aktif dalam Penurunan Konsentrasi Logam Tembaga (Cu) dan Timbal (Pb). 12(02), 29–37.
2. Anwar, N. A. F., Meicahayanti, I., & Rahayu, D. E. (2022). Pengaruh Variasi Waktu Kontak dan Massa Adsorben Kulit Jeruk Siam (Citrus Nobilis) Terhadap Penyisihan Kadmium (Cd) dan Merkuri (Hg). Jurnal Teknologi Lingkungan UNMUL, 6(1), 35–43.
3. Bandosz, T. J., & Jagiello, J. (2007). Activated Carbon: Surface Chemistry, Structure, and Applications. CRC Press.
4. Bani, M., & Santjojo, D. H. (2013). Pengaruh Suhu Reaksi Reduksi Terhadap Pemurnian Karbon Berbahan Dasar Tempurung Kelapa. 2(2), 159–163. https://natural.ub.ac.id/index.php/natural-b/article/viewFile/221/185
5. Budi, E. (2011). Tinjauan Proses Pembentukan dan Penggunaan Arang Tempurung Kelapa Sebagai Bahan Bakar Bahan Komponen Kandungan Sifat termal. 14(C), 25–29.
6. Hariyanti, Y. (2017). Analisis Kinerja Kolom Adsorpsi Kontinu untuk Pengolahan Larutan Zat Warna Strawberry Red Menggunakan Adsorben Karbon Aktif. Universitas Katolik Parahyangan.
7. Indah, S., Helard, D., & Lathifatuzzahrah, S. (2022). Penyisihan Fosfat dari Air Limbah Artifisial Laundry Memanfaatkan Kulit Jagung Sebagai Adsorben. Jurnal Litbang Industri, 12, 33–40. https://doi.org/http://dx.doi.org/10.24960/jli.v12i1.7504.33-40
8. Maranggi, I. U., Rahadianto, W. T., Chandra, Y., & Sugesti, H. (2025). Pengaruh Variasi Massa Bentonit dan Suhu Pemanasan Terhadap Efektivitas Penjernihan Minyak Jelantah Secara Fisika dan Kimia. Jurnal Teknologi Kimia Unimal, 1(Mei), 78–88.
9. Masriatini, R., Fatimura, M., Pengajar, S., Teknik, F., Studi, P., & Kimia, T. (2019). Penggunaan Arang Tempurung Kelapa yang Diaktifkan untuk Menyerap Zat Warna Limbah Cair Industri Kain Tradisional. 4, 37–40. https://doi.org/https://doi.org/10.31851/redoks.v4i2.3508
10. Mendame, L. L., Silangen, P., & Rampengan, A. (2021). Perbandingan Karakteristik Karbon Aktif Arang Tempurung Kelapa dan Arang Tempurung Kemiri Menggunakan Scanning Electron Microscopic dan Fourier Transform Infra Red. Jurnal Fista: Fisika Dan Terapan, 2, 105–108.
11. Nurdin, M., Salamba, R., Hikmawati, Wibowo, D., & Maulidiyah. (2015). Preparation and Characterization of Activated Carbon from Coconut Shell – Doped Tio2 in Water Solution. Oriental Journal of Chemistry, 4. https://doi.org/http://dx.doi.org/10.13005/ojc/310462
12. Ojo, D. T., Amuda, O. S., Salam, K. K., Oyediran, O. F., & Yekini, B. B. (2025). Preparation and Characterization of Steam-Activated and Green Alkali-Activated Carbon from Coconut Shells. Next Nanotechnology, 8(May), 100198. https://doi.org/10.1016/j.nxnano.2025.100198
13. Rouquerol, F., Rouquerol, J., & Sing, K. (2014). Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Academic Press.
14. Samosir, A. F., Yulianto, B., & Suryono, C. A. (2019). Arang Aktif dari Ampas Kopi sebagai Absorben Logam Cu Terlarut dalam Skala Laboratorium. 8(3), 237–240.
15. Simanjuntak, G. R. (2012). Pengaruh Massa Adsorben dan Waktu Kontak terhadap Adsorpsi Fosfat Menggunakan Adsorben Kitosan- Ferrihidrit dengan Sistem Batch [Universitas Brawijaya]. https://repository.ub.ac.id/id/eprint/153136/1/SKRIPSI.pdf
16. Sujiono, E. H., Zabrian, D., Zharvan, V., & Humairah, N. A. (2022). Results in Chemistry Fabrication and Characterization of Coconut Shell Activated Carbon Using Variation Chemical Activation for Wastewater Treatment Application. Results in Chemistry, 4(January), 100291. https://doi.org/10.1016/j.rechem.2022.100291
17. Tasanif, R., Isa, I., & Kunusa, W. R. (2020). Potensi Ampas Tebu Sebagai Adsorben Logam Berat Cd , Cu dan Cr. Jambura Journal of Chemistry, 2(01), 33–43. https://ejurnal.ung.ac.id/index.php/jjc/article/view/2608/pdf
18. Toprak, A., & Kopac, T. (2017). Carbon Dioxide Adsorption Using High Surface Area Activated Carbons from Local Coals Modified by KOH, NaOH and ZnCl2 Agents. International Journal of Chemical Reactor Engineering. https://doi.org/10.1515/ijcre-2016-0042












