Corrosion Reaction Kinetics of Rusty Iron in HCl, H₂SO₄, and NaOH: Determination of Reaction Order and Dissolution Rate

Authors

  • Dian Wardana Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Indonesia
  • Andhika Febrian Pulungan Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Indonesia
  • Meisya Hasiana Pasaribu Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Indonesia
  • Syakira Azmi Aurellia Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Indonesia
  • Dilla Rama Dina Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Indonesia
  • Ike Wijaya Sinaga Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Indonesia
  • Bella Junita Sari Br. Tamba Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Indonesia
  • Ahmad Nasir Pulungan Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Indonesia
  • Moondra Zubir Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Indonesia
  • Dwi Sapri Ramadhan Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Indonesia
  • Jam’an Fahmi Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Indonesia
  • Wulan Dwi Safitri Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Indonesia

DOI:

https://doi.org/10.24114/ijcst.v9i1.72427

Keywords:

corrosion kinetics, iron rust, dissolution rate, reaction order

Abstract

Corrosion is the degradation of metals resulting from chemical interactions with their surrounding environment, leading to significant impacts on industrial systems and infrastructure. This study investigates the corrosion kinetics of rusted iron in hydrochloric acid (HCl), sulfuric acid (H₂SO₄), and sodium hydroxide (NaOH) solutions by determining dissolution rates and reaction order. The corrosion behavior was evaluated using a mass loss method, in which the initial and final masses of rusted iron were measured after immersion in solutions of varying concentrations and exposure times. The results indicate that H₂SO₄ exhibits the highest dissolution rate, followed by HCl, while NaOH shows the lowest corrosion activity. Kinetic analysis reveals that the dissolution process follows first-order reaction kinetics. Furthermore, increasing acid concentration significantly accelerates the corrosion rate, whereas alkaline conditions result in comparatively slower iron dissolution.

References

1. Ashwijuwan, H. A., Winardi, Y., & Munaji, M. (2024). The Effect of Coating Thickness on Corrosion Resistance of Paint Coatings on Galvanized Steel. Turbo: Journal of Mechanical Engineering Study Program, 13(1).

2. Fadillah, F., Fichri, O. I., & Syeptiani, S. (2023). Analisis Penyebab Terjadinya Korosi pada Pagar Rumah yang Terbuat dari Logam. Jurnal Multidisiplin Raflesia, 2(2), 72-77.

3. Maulana, M. M. R., Cahyo, B. D., & Moonlight, L. S. (2022). Pengaruh Larutan Asam Clorida (HCl), Asam Nitrat (HNO₃), dan Natrium Clorida (NaCl) terhadap Laju Korosi pada Alumunium Alloy 2024. In Prosiding SNITP (Seminar Nasional Inovasi Teknologi Penerbangan), 6(1).

4. Ogunleyea, O. D., Odulanmia, O. A., & Fayomi, O. C. (2020). Corrosion Characteristics and Passive Behavioral Responses. In IOP Conference Series: Materials Science and Engineering, 1107(1), p. 012234. IOP Publishing.

5. Pérez, F. M. (2025). Corrosion, Types and Prevention. Journal of Building Technology, 7(1), 2717-5103.

6. Rahmanto, W. H., & Nuryanto, R. G. (2002). Corrosion Rate of Copper and Iron in Seawater Based on Resistance. Journal of Coastal Development, 5(2), 67-74.

7. Rochmat, A., Putra, B. P., Nuryani, E., & Pramudita, M. (2017). Karakterisasi Material Campuran SiO₂ dan Getah Flamboyan (Delonix regia) sebagai Material Coating Pencegah Korosi pada Baja. Jurnal Teknologi Kimia Unimal, 5(2), 27-36.

8. Royani, A. (2020). Pengaruh Suhu terhadap Laju Korosi Baja Karbon Rendah dalam Media Air Laut. Jurnal Simetrik, 10(2), 344-349.

9. Saugi, W. (2021). Pengaruh Faktor Fisik, Kimia, dan Biologi Medium terhadap Laju Korosi Besi. Borneo Journal of Science and Mathematics Education, 1(1), 29-55.

10. Septianingsih, D., Suka, E. G., & Suprihatin, S. (2014). Pengaruh Variasi Konsentrasi Asam Klorida terhadap Laju Korosi Baja Karbon Rendah ASTM A 139 Tanpa dan Dengan Inhibitor Kalium Kromat 0,2%. Jurnal Teori dan Aplikasi Fisika.

11. Tampubolon, M., Gultom, R. G., Siagian, L., Lumbangaol, P., & Manurung, C. (2020). Corrosion Rate of Medium Carbon Steel Due to Immersion in Sulfuric Acid (H₂SO₄) and Hydrochloric Acid (HCl) Solutions with Varying Time. Sprocket Journal of Mechanical Engineering, 2(1), 13-21.

12. Utomo, R. S. B., & Alva, S. (2017). Study and Characterization of Aluminum Metal Corrosion Rate with SolGel Membrane Coating. Journal of Mechanical Engineering (JTM), 6(3), 192.

13. Ya.G. Avdeev, & Yu.I. Kuznetsov. (2023). Iron oxide and oxyhydroxide phases formed on steel surfaces and their dissolution in acidic media. Review. International Journal of Corrosion and Scale Inhibition, 11(2).

14. de Andrade, L. M., Paternoster, C., Chevallier, P., Gambaro, S., Mengucci, P., & Mantovani, D. (2022). Surface processing for iron-based degradable alloys: A preliminary study on the importance of acid pickling. Bioactive Materials, 11, 166–180.

15. Solihin, S., Arinaldo, P., Dewi, N., & Permana, H. (2019). The kinetic profile of iron dissolution from laterite ore in chloric acid solution. Indonesian Mining Journal, 22(1), 20–37

Downloads

Published

2026-01-31