

EINSTEIN (e-Journal)

Jurnal Hasil Penelitian Bidang Fisika

LITERATURE STUDY: SENSITIVITY AND ENERGY DEPENDENCE OF THERMOLUMINESENCE DOSIMETER CaSO₄:Dy AGAINST RADIATION

Soraya¹, Yuni Warty¹, Dewi Wulandari¹, Abdul Rahim², Abdon Manalu²

¹Department of Physics, Faculty of Mathematics and Natural Sciences, State University of Medan ²Radiation Measuring Instruments Laboratory, Center for Safety of Health Devices and Facilities (BPAFK) Medan, Ministry of Health, Indonesia

yuniwarty@gmail.com

Submit: August 2025. Approved: September 2025. Published: October 2025.

ABSTRACT

This literature study examines the sensitivity and energy dependence of the thermoluminescence dosimeter CaSO₄:Dy in radiation measurements. Several scientific articles were analyzed to review the sensitivity and energy dependence. The study's results showed that CaSO₄:Dy has high sensitivity against various types of radiation, such as β -rays, γ -rays, and χ -rays. TLD CaSO₄:Dy can detect doses as low as 24. Thermal treatment and doping addition can also enhance the resulting TL response. TLD CaSO₄:Dy has a high energy dependence, especially at low energies; the lower the energy, the lower the response accuracy. The energy dependence shows stability at \geq 200 keV.

Keywords: Ionizing Radiation, TLD, CaSO4:Dy, Sensitivity, Energy Dependence

INTRODUCTION

Radiation is the energy released from waves or particles from a radioactive source or substance (Fuadi et al., 2022). radiation includes the electromagnetic spectrum and known atomic and subatomic particles (Tsoulfanidis & Landsberger, 2021). Radiation is the emission or transfer of energy that can travel through space or matter through waves or particles. Radiation can penetrate various materials and is divided into ionizing and nonionizing radiation, according to the energy of the particles released. Ionizing radiation is produced by radioactive decay, nuclear fission, very hot objects, and accelerators. Familiar sources of ionizing radiation come from radioactive substances that emit alpha (α), beta (β), or gamma (γ) (Acherar, 2024; Karmaker et al., 2021). Radiation—ionizing radiation sources are widely used in various fields of research and industry, such as Cs-137, Sr-90, Co-60, and X-rays.

There are three classifications ionizing radiation exposure established by the ICRP, namely occupational, public, and medical exposures, where the application of dose limitations only applies to occupational and public exposures (ICRP, 2007; Rahman et 2020). Ionizing radiation requires al., supervision, especially regarding the source, type, nature, effects, and how to avoid it (Ramadhani et al., 2023). Ionizing radiation has the potential to cause adverse effects on workers, patients, and the public. Radiation protection is crucial in controlling these adverse impacts (Fuadi et al., 2022). Radiation measuring instruments act as radiation

protection by providing radiation dose information (Christianti, 2018).

Based on the Regulation of the Head of the Nuclear Energy Regulatory Agency No. 8 of 2011, radiation protection is the steps taken to reduce the adverse effects of radiation resulting from radiation exposure. The use of nuclear energy must be carefully monitored to comply with all regulations relating to nuclear energy safety and not cause radiation hazards to radiation workers, the community, and the environment (BAPETEN, 2011; Pratiwi et al., 2021). Various radiation monitoring tools are used to support this monitoring, including a personal dosimeter.

The concept of dosimetry and the definition of dose used for protection against external sources of radiation have been established by the International Commission on Radiological Protection (ICRP) and the International Commission on Radiation Units Measurements and (ICRU). Radiation protection through dosimetry is crucial to understanding the radiation dose received by radiation workers while carrying out their duties, the amount of radiation released into the environment, and the radiation dose used for therapy in cancer treatment (Hiswara & Darmawati, 2024; ICRP, 2007).

Three types of personal dosimeters are used today, including widely pocket dosimeters (pen/pocket dosimeters), film badges, and thermoluminescence dosimeters (TLD) (Hernawan et al., 2016). TLD is a personal dosimeter utilized for measuring doses of gamma, X-ray, beta radiation, and neutrons (Aslam et al., 2015). These TLDs utilize thermoluminescent inorganic crystals, such as LiF and CaSO4 materials (Ajiz et al., 2015). The advantages of TLD include ease of operation, the ability to monitor various radiation dose levels, repeated use, and resistance to environmental factors. However, the disadvantage is that the dose data will be lost after the reading process, so it is impossible to re-verify if there is doubt in the results (Widhianasari et al., 2022).

One of the TLD materials that is widely used is CaSO₄:Dy. Sensitivity and energy dependence must be reviewed as a dosimeter

material to ensure reliability and accuracy in measuring ionizing radiation. Sensitivity is crucial in dosimetry, especially for dose monitoring in individuals or personal dosimetry, because the dose received is usually minimal to moderate. So, a dosimeter with high sensitivity is needed to detect the dose accurately (Mianji & Baradaran, 2016). Meanwhile, energy dependence is the variation of TL response at a specific dose that depends on energy and is very crucial in medical dosimetry. Therefore, the absorption and scattering of radiation in the dosimeter must be similar to the material whose dose will be measured (Rivera, 2012).

The purpose of this literature study is to evaluate and summarize research results related to the sensitivity and energy dependence of material CaSO₄:Dy.

RESEARCH METHOD

This study uses a literature review approach, which involves reviewing several scientific journal articles that discuss the sensitivity and energy dependence of TLD CaSO₄:Dy. This method assesses the extent of available knowledge on a particular topic and aims to identify, evaluate, and summarize the results of previous research to obtain a comprehensive understanding of the topic being studied (Snyder, 2019).

Journal articles were collected from various online databases such as Google Scholar, Science Direct, Research Gate, Publish or Perish, and so on. The search was conducted using keywords such as "Ionizing Radiation," "TLD CaSO4:Dy," "Sensitivity," and "energy dependence." The collected articles were then reviewed in a structured manner, namely by paying attention to the main topic, the purpose of each study, the methods used, and the results and conclusions presented. (Aveyard & Jones, 2019). This review was conducted to obtain a general overview and development of research related to the studied topic.

The results of this study will be presented in tabular form. The table is arranged to facilitate information delivery and

support understanding of the research development on the sensitivity and energy dependence of TLD CaSO₄:Dy against radiation.

RESULT AND DISCUSSION

This study aims to review various studies that discuss the sensitivity and energy dependence of the TLD CaSO₄:Dy. Several

relevant journal articles have been analyzed to identify the approaches used, the results obtained, and each study's contribution to understanding the topic studied.

Sensitivity CaSO₄:Dy in Radiation Detection

A summary of literature study results on material sensitivity CaSO₄:Dy is presented in Table 1 below.

Table 1. Literature Summary on Sensitivity

Authors	Radiation Source	Dose Range	Sensitivity TLD CaSO ₄ :Dy
(Maula et	Sr-90, Cs-137, and X-rays	0,3;0,5;1;3	Can detect the lowest dose of $24 \mu Sv$ at 80
al., 2021)	(20–100 keV)	and 5 mSv	keV
(Kartikasa	Sr-90 and Cs-137	5, 10, 15, 20,	The highest radiation response sequence
ri et al.,		and 25 mGy	is; CaSO4:Dy (Sr-90), CaSO4:Tm (Sr-90,
2018)			CaSO4:Dy (Cs-137) and CaSO4:Tm (Cs-
			137)
(Rivera et	Co-60	1 to 30 Gy.	TL intensity is linear to the dose
al., 2010)			
(Fernánde	X-ray	0,1 to 60	CaSO4:Dy response 5.6 times higher than
z et al.,		mGy	TLD-100
2016)			
(Nuraeni	Not mentioned	Not	Sensitivity increases with increasing
et al.,		mentioned	annealing temperature
2017)			

Energy Dependence

Table 2 below summarizes the results of literature studies on the energy dependence of

materials TLD against radiation such as Cs-137, Sr-90, Co-60, and X-rays.

Table 2. Literature Summary on Energy Dependence

Authors	Radiation Source	Dose Range	Energy Dependence
(Maula et	Sr-90, Cs-137, and X-rays	0,3;0,5;1;	High energy, dependence is most
al., 2021)	(20–100 keV)	$3\ and\ 5\ mSv$	problematic at low energies (<200 keV).
(Kartikasari	Sr-90 and Cs-137	5, 10, 15, 20,	The synthesized CaSO4:Dy and
et al., 2018)		and 25 mGy	CaSO4:Tm have higher responses to β-
			rays than γ-rays.
(Jumpeno et	Cs-137 and X-rays (80	0.5;1;3;5	High linearity, X-ray (R ² = 0,9987) and Cs-
al., 2023)	keV)	and 10 mSv	137 ($R^2 = 0.9997$) (using TLD-100)
(Alanazi et	Cs-137 and X-ray (165	2, 5, and 10	TLD-100 shows a relatively higher
al., 2023)	keV)	mSv	response than MTS-N when utilizing 10
			mSv Cs-137, approximately 25%, and 5
			mSv X-rays, about 10%.
(Oktaviani	Cs-137	5 mSv	The response uniformity falls within a
et al., 2023)			reasonably uniform range, exhibiting
			considerable variation of 2.25% to 14%
			(using TLD-100).

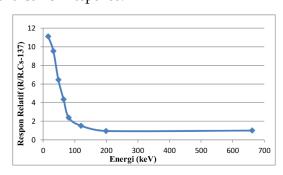
Soraya, Yuni Warty, Dewi Wulandari, Abdul Rahim, Abdon Manalu; Literature Study: Sensitivity and Energy Dependence of Thermoluminesence Dosimeter CaSO₄:Dy Against Radiation

(Sadeghi et Cs-13	37	81, 162 and	Element correction coefficient (ECC)
al., 2015)		40.5 mGy	values with an average variation of only
			1.5%. All measured ECC values do not
			exceed the 5% limit, indicating high
			consistency of the dosimeter response
			(using TLD-100).
(Nuraeni et Cs-13	37 and Sr-90	5, 10, 15, 20	The TL response of a β -ray source obtains
al., 2019)		and 25 mGy	a higher intensity than that of a γ -ray
			source.

Discussion

Sensitivity CaSO₄:Dy in Radiation Detection

Some literature shows that the material CaSO₄:Dy has a high sensitivity to radiation such as ray- β , ray- γ , and X-ray. Studies by Maula et al. (2021) detect the lowest dose response in X-rays (80 keV), which is 24 μ Sv. The results indicate that CaSO₄:Dy exhibits a response that is 5.6 times greater than TLD-100 in low-dose X-ray measurements (Fernández et al., 2016).


The addition of dysprosium (Dy) and thulium (Tm) doping and thermal treatment also contributed significantly to the increase in sensitivity. The rise in TL response from 59.29 nC after irradiation, after the re-annealing process at a temperature of 700°C, 800°C, and 900°C, the sensitivity increased to 66.12 nC, 169.45 nC, and 552.37 nC, respectively (Nuraeni et al., 2017). Similarly, it was revealed that the synthesis via precipitation method yielded two consistent TL peaks at 180°C and 300°C with a linear response up to 30 Gy, making it a promising candidate for medium dose dosimetry (Rivera et al., 2010).

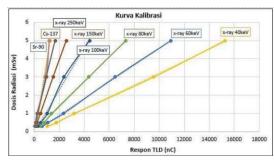
Based on several pieces of literature show that TLD CaSO₄:Dy is highly sensitive to various types of radiation, such as β -rays and γ -rays. TLD CaSO₄:Dy can detect doses as low as 24 μSv . The resulting TL response can also be increased by thermal treatment and doping addition.

Energy Dependence

TLD CaSO₄:Dy has a high energy dependency, especially at low energies. Maula et al. (2021) state that the dosimeter response to radiation changes depending on the amount of radiation energy; the smaller the energy, the less accurate the response. The TLD CaSO₄:Dy tested shows an overresponse to low energies. This means that if used for radiation measurements,

it can cause overestimation. Energy dependence is most problematic for low energies (<200 keV). Figure 1 shows the normalized values related to the Cs-137 response.

Figure 1. Photon Resource Energy Dependence (Maula et al., 2021)


Studies show that CaSO4:Dy's response to thermoluminescence is highest to Sr-90 radiation, followed by Cs-137 gamma rays (Kartikasari et al., 2018; Nuraeni et al., 2019). This phenomenon is also emphasized in the study of Nazaroh et al. (2017), which shows the variation of TLD response to photon energy from 12.7 to 661.6 keV. TLD shows a strong dependence in the low energy range but still has good linearity with dose.

Linearity and Reproducibility

Some literature also emphasizes the linearity and stability of the TLD response. CaSO₄:Dy has a linear response to gamma dose from Cs-137, Co-60, and X-rays (Nazaroh et al., 2017; Rivera et al., 2010). However, signal fading after irradiation must be taken into account. Studies by Jumpeno et al. (2023) obtained fading of 3.6% and 2.7% on the OSL dosimeter with Cs-137 radiation. Meanwhile, fading on 80 kVp X-rays showed 5.9% and 8.8% values for two radiation doses, namely one mSv and 5 mSv.

Oktaviani et al. (2023) and Sadeghi et al. (2015) highlight the significance of uniformity

and repeatability in dosimetry systems with Cs-137. The TLD-100 response uniformity values are in the fairly uniform range, with significant variations in the range of 2.25%-14%. TLD-100 shows element correction coefficients (ECC) with an average variation of only 1.5%. CaSO₄:Dy generally still requires attention to batch control and recalibration processes. Figure 2 compares the linearity of CaSO₄:Dy to some radiation energy.

Figure 2. Linearity (Maula et al., 2021)

CONCLUSION AND SUGGESTION

Thermoluminescence dosimetry rCaSO₄:Dy has a sensitivity that makes it ideal for adjusting radiation doses, although its dependence on energy variations is quite significant. Based on several reviewed literature, TLD CaSO4:Dy can detect doses as low as 24 µSv, and Energy dependence Fernández, S. D. S., García-Salcedo, R., Sánchezshows stability at ≥200 keV energy. Therefore, radiation dosimetry requires correction calibration to ensure the accuracy of the results, especially when used at varying energy spectra.

REFERENCES

Acherar, S. (2024). Editorial: Recent advances in medical radiation technology. Frontiers in 1–3. Chemistry, 12, https://doi.org/10.3389/fchem.2024.1360379

Ajiz, L., Sutanto, Hiswara, E., & Nugraha, E. D. (2015).Pembuatan Thermoluminescence Dosimeter (TLD) Serbuk CaSO 4: Dy Dengan Penerapan Teknologi Nano. September, 161-168.

Alanazi, S. F., Alarifi, H., Alshehri, A., & Almurayshid, M. (2023). Response Evaluation of Two Commercial Thermoluminescence **Dosimeters** (TLDs) Against Different Parameters. BJR|Open. https://doi.org/10.1259/bjro.20220035

Aslam, M. B., Eri, H., Sutanto, & Eka Djatnika, N.

(2015).Pembuatan Thermoluminescent Dosimeter (TLD) Serbuk Melalui Metode Sintering sebagai Proses Awal Produksi Dosimeter Personal. Jurnal MIPA FKIP UNS Surakarta.

Aveyard, H., & Jones, C. B. (2019). An Analysis of Current Practices in Undertaking Literature Reviews in Nursing: Findings From a Focused Mapping Review and Aynthesis. BMC Medical Methodology, Research 19(105), https://doi.org/10.1186/s12874-019-0751-7

BAPETEN. (2011). Badan Pengawas Tenaga Nuklir Nomor 8 Tahun 2011 Tentang Keselamatan Radiasi Dalam Penggunaan Pesawat Sinar-X Radiologi Diagnostik Dan Intervensional.

Christianti, K. hastu. (2018). Analisis Nilai Faktor Kalibrasi Dan Nilai Calibration (CMC) Measurement Capability Pada Dosimeter Saku Dan Surveimeter Gamma Di Laboratorium Kalibrasi Alat Ukur Radiasi (KAUR) Balai Pengamanan Fasilitas Kesehatan (BPFK) Surabaya. Institut Teknologi Sepuluh November.

Guzmán, D., Ramírez-Rodríguez, G., Gaona, E., León-Alfaro, M. A. de, & Rivera-Montalvo, T. (2016). Thermoluminescent Dosimeters for Low Dose X-ray Measurements. Applied Radiation and Isotopes, 107, 340–345. http://dx.doi.org/10.1016/j.apradiso.2015.11.0 21

Fuadi, N., Jusli, N., & Harmini. (2022). Pemantauan Dosis Perorangan Menggunakan Thermoluminescence Dosimeter (Tld) Di Wilayah Papua Dan Papua Barat Tahun 2020-2021. Jurnal Sains Fisika, 2(1), 63-74. http://journal.uinalauddin.ac.id/index.php/sainfis

Hernawan, S., Nugraha, E. D. N., Sutanto, & Hiswara, E. (2016). Litium Fluorida Dan Pengotor Titanium. Jurnal Forum Nuklir (JFN), 10(1), 40.

Hiswara, E., & Darmawati, S. (2024). Pengantar Sistem Proteksi Radiasi. Penerbit BRIN.

ICRP. (2007). The 2007 Recommendations of the

- Soraya, Yuni Warty, Dewi Wulandari, Abdul Rahim, Abdon Manalu; Literature Study: Sensitivity and Energy Dependence of Thermoluminesence Dosimeter CaSO4:Dy Against Radiation
- International Commission on Radiological Protection. In ICRP Publication 103 (Vol. 37, Nomor 2-4).
- Jumpeno, E. B., Anggraeni, R., Barokah, S. N., & Syaifudin, R. (2023). Dose Response of Personnel OSL Dosimeter to the Cesium-137 and 80 kVp X-ray Exposure. Atom Indonesia, 209-213. https://doi.org/10.55981/AIJ.2023.1313
- Karmaker, N., Maraz, K. M., Islam, F., Haque, M. M., Razzak, M., Mollah, M. Z. I., Faruque, M. R. I., & Khan, R. A. (2021). Fundamental characteristics and application of radiation. GSC Advanced Research and Reviews, 7(1), 064-072. https://doi.org/10.30574/gscarr.2021.7.1.0043
- Kartikasari, D., Zulys, A., Hiswara, E., & Nuraeni, N. (2018). Synthesis of Thermoluminescence Dosimeter (TLD) Using Calcium Sulfate (CaSO4) With Variations of Dysprosium (Dy) and Thulium (Tm) Dopants. AIP Conference Proceedings, 2023(1). https://doi.org/10.1063/1.5064081
- Maula, E. M. T., Noor, J., & Bunawas. (2021). Rahman, F. U. A., Nurrachman, A. S., Astuti, E. Characteristic Testing (Performance) of CaSO4: Dy Thermoluminescent Ring Dosimeter According to The ISO 12794:2000. Journal of Physics: Conference https://doi.org/10.1088/1742-6596/1796/1/012061
- Mianji, F., & Baradaran, S. (2016). Quantitative Evaluation of LiF: Mg, Ti (TLD-100) Long-Term Sensitivity Stability. Journal **Physics** Biomedical and Engineering. https://doi.org/10.31661/jbpe.v0i0.418
- Nazaroh, Syaifudin, R., & C. Tuti Budiantari. (2017). Pengaruh Sinar-x /Foton Pada Rentang Energi (12,7-661,6) keV Terhadap Respon TLD BARC (CaSO4:Dy) dan Algoritma untuk Evaluasi Respon TLD. Seminar Keselamatan Nuklir 2017, 153-161.
- Nuraeni, N., Iskandar, F., Waris, A., & Haryanto, Preliminary F. (2017).Studies of Thermoluminescence Dosimeter CaSO4:Dy Synthesis. International Conference on Energy Sciences (ICES 2016), 877(012065). https://doi.org/10.1088/1742-

6596/877/1/012065

- Nuraeni, N., Kartikasari, D., Yani, S., Hiswara, E., Haryanto, F., Iskandar, F., & Waris, A. (2019). Thermoluminescence characteristic CaSO4:Dy on B and y radiation. Journal of Physics: Conference Series, 1248(1), 012081. https://doi.org/10.1088/1742-6596/1248/1/012081
- Oktaviani, A., Setiawati, E., Hidayanto, E., & Nuraeni, N. (2023). Determination Uniformity Value Response and Calibration Factors TLD Chips Using GAMMA Sources. International Journal of Scientific Research in Science and Technology, November 2023, 296-300.

https://doi.org/10.32628/ijsrst52310643

- Pratiwi, A. D., Indriyani, & Yunawati, I. (2021). Penerapan Proteksi Radiasi di Instalasi Radiologi Rumah Sakit. Higeia Journal of Public Health Research and Development, 409-420. https://doi.org/https://doi.org/10.15294 /higeia/v5i3/41346
- R., Epsilawati, L., & Azhari, A. (2020). Paradigma Baru Konsep Proteksi Radiasi Dalam Pemeriksaan Radiologi Kedokteran Gigi: Dari ALARA Menjadi ALADAIP. Jurnal Dentomaksilofasial Radiologi Indonesia 27-34. (JRDI), 4(2),https://doi.org/10.32793/jrdi.v4i2.555
- Ramadhani, N. F., Saputra, D., & Nurrachman, A. S. (2023). Literasi Bahaya Penggunaan Radiasi pada Siswa Madrasah Tsanawiyah Miftahul Ulum Melirang Bungah Gresik. Pengabdian Nasional (JPN) Indonesia, 4(2), 429-434.

https://doi.org/10.35870/jpni.v4i2.234

- Rivera, T. (2012). Thermoluminescence in Medical Dosimetry. Applied Radiation and 30-34. Isotopes, 71, https://doi.org/10.1016/j.apradiso.2012.04.018
- Rivera, T., Roman, J., Azorín, J., Sosa, R., Guzmán, J., Serrano, A. K., García, M., & Alarcón, G. (2010).Preparation of CaSO4:Dy Precipitation Method To Gamma Radiation Dosimetry. Applied Radiation and Isotopes, 68,

623-625.

https://doi.org/10.1016/j.apradiso.2009.09.033

- Sadeghi, M., Sina, S., & Faghihi, R. (2015). Investigation of LiF, Mg and Ti (TLD-100) Reproducibility. Journal of Biomedical Physics and Engineering, 5(4), 217–222.
- Snyder, H. (2019). Literature Review As a Research Methodology: An Overview and Guidelines. Journal of Business Research, 104, 333–339.

https://doi.org/10.1016/j.jbusres.2019.07.039

- Tsoulfanidis, N., & Landsberger, S. (2021).

 Measurement & Detection of Radiation (5 ed.).

 CRC Press.

 https://doi.org/10.1201/9781003009849
- Widhianasari, Y., Satoto, B., & Darmini. (2022). Kualitas Performa TLD Reader. Madza Media. www.madzamedia.co.id