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 Land cover information is an essential aspect in the planning 
and management of earth modeling and understanding. Land 
cover changes, such as hydrological conditions and ecological 
systems, impact the physical and social environment. This 
study aimed to identify spatial differences in the land cover of 
the Batur catchment area from 2015-2021 by using a remote 
sensing approach to describe the existing land-cover site and to 
detect its changes. The methods used in this study are a 
combination of the vegetation index and a supervised 
classification maximum likelihood algorithm with Landsat 8 
OLI/TIRS in 2015 and 2021. Furthermore, the Change 
Detection Feature, identified from two image periods in 2015-
2021 and processed, is used to detect changes in land cover. The 
accuracy assessment utilized QuickBird imagery recorded in 
2015; field survey data were taken in 2021. The results showed 
that between 2015 to 2021, built-up area, bare land, shrubs, and 
lake have increased by 102,66% (306,01 ha), 27,95% (452,25 ha), 
15,20% (215,72 ha) and 4,05 % (62,73 ha) while dryland forest 
and dry-dry-field have decreased by -25,84% (-606,29 ha) and -
14.59% (-430,42 ha), respectively. The overall accuracy of the 
multispectral classification results in 2015 and 2021 was 82,63% 
and 89,57%. 
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INTRODUCTION 
One of the information needed for 

planning and management activities, and 

considered one important element in 

modeling and understanding the earth, is 

land-cover information (Lillesand et al., 

2015). The land-cover type and its changes 

will impact the hydrology  (Garg et al., 2019), 

soil erosion (Jazouli et al., 2019), climate (Sy 

& Quesada, 2020), and land surface 

temperature (Mukherjee & Singh, 2020). 

Land cover change is an important indicator 

for identifying the dynamics of land systems 

and the development of an environment 

(Abdullah et al., 2019). (Lin et al., 2020) state 

that continuous monitoring of land cover 

using satellite image classification helps 

regionalize land use policymaking. 
Many studies have been carried out on 

land cover change, such as land cover 

changes in Papua (Letsoin et al., 2020), 

identification of spatiotemporal pattern land 

use/land cover change under urbanization 

(Zhai et al., 2021), hydrological responses to 

land use/land cover change  (Berihun et al., 

2019). The denser the vegetation cover 

means less erosion and a less rate of soil loss 

(Tadele et al., 2017). (Berihun et al., 2019) 

states that land cover positively influences 

the annual surface runoff. The human factor 

is one of the factors that caused land cover 

change (Hua et al., 2015), processes of 

intensified anthropogenic accelerated land 

cover/land use change (Vinayak et al., 2021). 

Therefore, monitoring the land cover 

condition in an area, including the Batur 

catchment area, is crucial. 
The identification of land-cover 

changes on a small scale can still be made 

manually in the field, but this is difficult to 
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do if changes occur on a large scale. Various 

efforts have been made to obtain the right 

method, one using a remote sensing 

approach. Remote sensing and system 

geographic information have been widely 

used to identify land cover change. Remote 

sensing offers the ability to measure land-

cover change at different scales, locations, 

and times ( Moser et al., 2013; Wu et al., 2017; 

Mohammadi et al., 2019). Multi-date remote 

sensing data images can provide 

information that can help classify the 

different component land use on a large 

scale at a lower cost  (Barakat et al., 2019; 

Thyagharajan & Vignesh, 2019). One 

approach often used for land-cover 

identification is an image analysis approach 

based on digital classification (Rahman et al., 

2012; Rwanga & Ndambuki, 2017; Sharma et 

al., 2017). The classification technique is 

pixel-based (Taati et al., 2016; Weih & 

Riggan, 2010), which aims to mark or label 

pixels in image data with information on 

earth (Aslami & Ghorbani, 2018). Supervised 

maximum likelihood is one multispectral 

classification commonly used for land-cover 

type (Rawat & Kumar, 2015; Bektas Balcik & 

Karakacan Kuzucu, 2016). 

Recently, several researchers have 

focused on evaluating the potential of 

Landsat image data with various methods 

for classification, monitoring the land cover, 

and analyzing land-cover changes  

(Alkaradaghi et al., 2018; Phiri et al., 2018; 

Potapov et al., 2020). Landsat imagery is one 

of the optical images used in remote sensing 

for land-cover identification (Alam & 

Hossain, 2020; Mohamed et al., 2020; 

Rathnayake et al., 2020). Multi-temporal 

Landsat image data can detect land-cover 

change with medium resolution. Many 

researchers chose this image because it has 

been free since 2008 and can be accessed on 

the United States Geological Survey (USGS) 

website (Sun et al., 2018; Wulder et al., 2019). 
The Batur catchment area is one of the 

catchment areas in Bali Province, with101,62 

km2 area covering land and Lake Batur (P3E 

Bali Nusra, 2018). The Batur catchment area 

is at an altitude of 1,200 - 1,800 meters above 

sea level. The slope class of the Batur 

catchment area consists of a slope class of < 

3% to >65%. Most low-slope slopes are 

located within the caldera area, while the 

relatively high slopes are on the edge of the 

caldera, and some are located on Mount 

Batur (P3E Bali Nusra, 2018). Soil 

physiography of the Batur catchment area is 

dominated by Caldera Valley and Volcanic 

Cone with 4,270.44 ha (42.02%) and 4,240.68 

ha (41.72%). Meanwhile, the remaining 16% 

is the waters of Lake Batur, with an area of 

1,651.32 ha (P3E, 2018). 
Lake Batur is a closed caldera lake 

without an inlet and outlet (KLH, 2014). One 

problem of the Batur Catchment area 

disclosed in the 2014 GERMADAN 

document is land degradation of forest to 

non-forest lands such as agricultural land, 

settlements, and sand mining. The 

document also reveals the decrease in 

vegetation area due to land conversion 

resulting in high levels of erosion and 

sedimentation in the Lake Batur area (KLH, 

2014). 

The data shows that in 2014 the land 

conversion rate in the Batur Catchment area 

was quite high, such as decreased plantation 

area by 18,55% and forest by 11,98%. 

Conversely, the yard and agriculture food 

areas are increasing by 89,66 and 30,95% 

(KLH, 2014). This land conversion is feared 

to affect the condition of the lake waters. As 

stated by (Patil, 2018), changes in land usage 

as a consequence of human activities can 

disrupt the shape of the land surface and 

result in changes in the rate of erosion which 

most of the time occurs naturally. In 2015, 

Balai Wilayah Sungai (BWS), listed in 2018 in 

the Rencana Pengelolaan Sumber Daya Air 

dan Lahan (RPSDAL) document, stated 

there had been 5.980,74 m3 sedimentation in 

Lake Batur. This sedimentation impacts 
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silting lake and decreases water volume by 

47,2 million m3 (P3E, 2018).  
Using a remote sensing approach, this 

study aimed to identify spatial changes in 
land cover in the Batur catchment area in 
2015-2021. We identified land-cover 
conditions in 2015 and 2021 and then 
compared and identified differences. This 
study uses a remote sensing approach to 
discuss spatial changes, so we do not 
specifically discuss the causes of changes 
outside of our system. 

 
 
 

RESEARCH METHODS 
Study Area 

Batur catchment area is located 
between latitude 8°11'18,35"S and 
8°17'35,45"S and longitude 115°19'16,42" E 
and 115°25'47,45"E Bangli District, Bali 
Province. Physiographically, the landscape 
of this area is mountainous in the form of a 
caldera bordered by circular hills around the 
caldera. Batur catchment areas are divided 
into six sub-catchments: Blingkang, Gede 
Tampuriang, Kedisan, Melilit, Serongga, 
and Trunyan (P3E, 2018). The study area is 
shown in Figure 1. 

 

 
Figure 1. Study Area (Source: Sentinel 2-A, 2021) 

 
Processing and Analysis Stages 

The stages of this research consist of (a) 
preparation and data acquisition, (b) image 
data preprocessing, (c) processing data 
consisting of composite bands and 
transforming vegetation index (NDVI), (d) 
taking training area (region of interest) (e) 
Multispectral classification of land-cover (f) 
field sampling (g) accuracy assessment of 
land-cover classification (h) detection of 
land-cover change. The details of the 
research flow chart are shown in Figure 2. 

 
Landsat Imagery, Spectral Indices, 
Classification, and Validation 

This study used Landsat 8 OLI/TIRS 
multispectral imagery with a resolution of 30 
meters spatial resolution consisting of 11 
bands from coastal aerosol (band1) to 
thermal infrared (band 11). However, in this 
study, we only used bands 2 (blue), 3 
(green), 4 (red), 5 (infrared), and 7 (swir 2). 
The explored datasets were Landsat 
OLI/TIRS C2 L2 path images 116 rows 066 
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captured on 17 May 2015 and 2 June 2021, 
QuickBird mosaic images captured in 2015 
as accuracy testing material, shapefiles of 
1:25,000 scale administrative boundaries 
from the Badan Informasi Geospatial (BIG), 
the boundary of Batur catchment area and 
the lake from Balai Wilayah Sungai (BWS) 
Bali Penida scale of 1:50.000. 

The method used in this research was 
remote sensing. This study used the land-
cover classification scheme of SNI 7645-
1:2014. Land-cover analysis used a 
combination of vegetation index spectral 
transformations, namely the Normalized 
Difference Vegetation Index (NDVI) with 
supervised classification maximum 
likelihood. The emphasis was on land-cover 
conditions and identifying changes in two 
different study years, 2015 and 2021. 

The formula of NDVI is shown in 
equation 1, where 𝜌𝑁𝐼𝑅 and 𝜌𝑅𝐸𝐷 are 
radiometrically corrected, infrared band, 
and red band. NDVI is an index measuring 
the balance between the energy received and 
the energy emitted by an object on the 
ground (Nath, 2015). NDVI can be calculated 
by combining the red and NIR bands of the 
sensor system. The concept of NDVI 
technology is based on the principle that 
healthy vegetation has low visible 

reflectance in the electromagnetic spectrum 
due to chlorophyll (Campbell, J.B., & 
Wynne, 2011). 

 

NDVI =  
ρNIR−ρRED

ρNIR+ρRED
         (1) 

 
Maximum likelihood algorithms are 

one of the most common supervised 
classifications for processing sensor data 
(Anderson et al., 1976). This method 
assumes the probability that a pixel belongs 
to a particular class. These classes have equal 
probabilities, and the input bandwidth is 
considered to be normally distributed 
(Adebayo et al., 2019). Furthermore, 
accuracy assessment used the confusion 
matrix method, while the change detection 
utilized the change detection feature in 
ENVI software. 

This research consisted of both in the 
field and remote sensing laboratory. We 
used a computer/ laptop for analysis and 
writing needs, ENVI software and Quantum 
GIS 3.16.14 for image data processing, 
Microsoft Office 2016 software for analysis 
and writing, Global Positioning System 
(GPS), and cameras for field survey needs. 
Other equipments for the field survey were 
a survey board and stationery.  

 

 
Figure 2. Research Flow Chart 
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RESULTS AND DISCUSSION 
Preprocessing Image 

Image data preprocessing consisted of 
geometric and radiometric corrections. The 
purpose of geometric correction was to 
minimize geometric distortion of the image, 
while radiometric correction was to improve 
image quality so that the spectral values in 
the image would be unbiased and consistent 
with the actual object (Danoedoro et al., 
2015). Both 2015 and 2021 Landsat 8 
OLI/TIRS images were corrected using the 
semi-automatic classification preprocessing 
feature for Landsat images in the Quantum 
GIS software.  
 
Spectral Indices and Multispectral 
Classification 

The NDVI vegetation index utilizes 

the red and near-infrared channels in the 

Landsat 8 OLI/TIRS imagery, and the 

resultant is a digital number value ranging 

between -1 and +1. Still, the positive value 

generally indicates soil and vegetation 

objects (Ghorbani & Ouri, 2012). NDVI was 

used to separate vegetated from non-

vegetated areas, which would be the basis 

for the multispectral classification. The 

brighter the object's appearance in the image 

indicates the denser the vegetation in the 

area. The brightness contrast or closer to +1 

will result from the combination of high 

reflectance on the near-infrared and low 

reflectance on the red bands. At the same 

time, non-vegetation areas such as bare land, 

water body, and snow will have a much 

lower NDVI value (Lillesand et al., 2015). 
Land-cover classification of Landsat 8 

OLI/TIRS imagery refers to SNI 7645-1:2014 

for a mapping scale of 1:50,000. The land-

cover types used in this study consist of 

dryland forests, shrubs, dry-field, bare land, 

built-up area, and lakes. Land-cover 

classification uses the maximum likelihood 

supervised classification method, which is 

common and proven the most accurate 

among other supervised classification 

methods (Patil et al., 2012). 

In this classification process, taking 

samples from each land cover type in the 

image, called the region of interest (ROI), 

was necessary. This ROI will mark pixels on 

certain land cover types for multispectral 

classification. Before taking ROI, composite 

images use several combinations, namely 

457, 432, and 532. This composite image 

aimed to visually highlight an object in the 

picture. 
 
Land-cover Conditions in 2015 

Based on the results of the land-cover 
analysis of a combination of spectral 
transformation and multispectral 
classification, it was found that land-cover in 
the Batur catchment area in 2015 was 
dominated by a dry-field area that is 29,02%, 
and the smallest is a built-up area that is 
2,93% of the total area of the study. Table 1 
shows the location of land-cover types based 
on image analysis in 2015 and 2021. Figure 3 
and 4 show their distribution. 

Based on the analysis of Landsat 8 
OLI/TIRS imagery in 2015 and 2021, the 
total area of the research area is 10.184,85 ha 
or 101,84 km2. The details of land-cover 
types from largest to smallest are dry-field 
2.955,53 ha or 29,02% of the research site 
area, dryland forest 2.346,3 ha or 23,04%, 
bare land 1,618.29 ha or 15,89%, lakes 
1.547,34 ha or 15,19%, shrubs 1.422,3 ha or 
13,94%, and built-up area 298,09 ha or 2,93%.  

Sub-catchment with the built-up type 
land-cover area from the largest to smallest 
in 2015 were sub-catchment Melilit, with an 
area of 118,53 ha or 3,09% of the total sub-
catchment area, followed by sub-catchment 
Kedisan with an area 63,79 ha or 8,95%, sub-
catchment Blingkang with an area of 59,49 
ha or 3,18%, sub-catchment Serongga with 
an area of 44,69 ha or 7,26%, then sub-
catchment Gede Tampuriang and sub-
catchment Trunyan with each of site 12,05 ha 
or 0,95%, and 10,84 ha or 3,44% of the total 
area of the sub-catchment.  

Melilit and Blingkang sub-catchments 
were the two largest in the Batur catchment, 
with the widest dry field of 1,110.89 ha and 
1,073.49 ha, respectively. The vast dry field 
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attracted the people, who were mostly 
farmers, to live there. However, the sub-
catchments with the most densely populated 
areas were the Kedisan sub-catchments and 
Serongga sub-catchments. Kedisan sub-
catchment includes several villages with a 
fairly large population, namely Kedisan, 
Buahan, Abang Batudinding, and 
Abangsongan towns, with a population of 
1,134 to 2,335 people (BPS, 2015). This sub-
catchment also had many tourist support 
facilities in the form of lodging, hotels, and 
villas. In the Serongga sub-catchment, there 
is a village named Songan B, the most 
populous in Kintamani District, with 8,825 
people living there (BPS, 2015). This 
population was high compared to other 
towns, where most were below that number. 

Other sub-catchments that are Gede 
Tampuriang and Trunyan sub-catchments 
were two sub-catchments with a relatively 
small built-up area. The bare-land cover 
dominated the Gede Tampuriang sub-
catchment, 675,62 ha or 53,66%. Most of this 
bare land was solid lava resulting from the 
eruption of Mount Batur, which was the 
Batur Geopark area, and the utilization was 
very limited. In contrast to the Trunyan sub-
catchment, which is a sub-catchment 
dominated by the dry-land-forest cover, 
covering an area of 202,42 ha or 64,22% of the 
sub-catchment area, most of this sub-
catchment area was an area with steep to 
very steep slopes, so it was not designated as 
a place of residence. 

The sub-catchments with the largest 
shrubs area were Melilit, Gede Tampuriang, 
and Blingkang sub-catchments with 681,78 
ha or 17,79%, 273,41 ha or 21,71% and 212,8 
ha or 11,38% of the sub-catchment area. 
Based on the analysis results, the condition 
of shrubs is associated with dryland forest 
conditions, dry-field, and bare land. This is 
indicated by the sub-catchment, which has 
the largest area of shrubs and dryland forest, 
dry-field, and bare-land. 
 
Land-cover Condition in 2021 

The types of land cover predominant 
in 2021 were dry-field with an area of 

24,79%, and the smallest was a built-up area 
with 5,93% of the research area. 
Furthermore, in 2021 the details of land-
cover area from largest to smallest are dry-
field 2.525,11 ha or 24,79% of the research 
site area, bare land 2.070,54 ha or 20,33%, 
dryland forest 1.740,01 ha or 17.08%, shrubs 
1.635,02 ha or 16,05%, lakes 1.610,07 ha or 
15,81%, and built-up area 604,1 ha or 5,93%. 

The sub-catchments with the largest to 
the smallest built-up land cover in 2021 
include Melilit, Gede Tampuriang, 
Blingkang, Kedisan, Serongga, and Trunyan 
sub-catchments, with each covering 240.81 
ha or 6,28%, 99,86 ha or 7,93%, 77,13 ha or 
4,13%, 76,03 ha or 10,67%, 74.67 ha or 12,13% 
and 25,38 ha or 8,05% of the sub-catchment 
area. 

Melilit and Blingkang sub-catchments 
are the two largest in the Batur catchment 
area, with the largest dry-field site covering 
944,56 ha or 24,64% and 932,03 ha or 49,85% 
of the sub-catchment area. The existence of a 
large dry field attracts people who are 
mostly farmers to live in these two areas. 
This encourages the development of tourism 
activities in another sub-catchment, the 
Gede Tampuriang sub-catchment, where hot 
spring tourism is featured. At several points 
in this sub-catchment, effects occurred for 
supporting facilities such as minimarkets, 
inns, and villas. Furthermore, many facilities 
have been built to support local community 
activities in Kedisan and Serongga sub-
catchments, which are densely populated. 

Meanwhile, the Trunyan sub-
catchment has a relatively small built-up 
area. This sub-catchment is dominated by 
dryland forest cover covering an area of 
192,61 ha or 61,11% of its area. In addition, 
parts of the Trunyan sub-catchment have 
steep slopes, so it is unsuitable for residence. 

The widest bare-land area is in the 
Melilit sub-catchment area, which is 1,108.87 
ha or 28,93% of the sub-catchment area, and 
the smallest is in the Trunyan sub-catchment 
area, which is 11,12 ha or 3,53% of the sub-
catchment area. Part of the Melilit sub-
catchment area is used as a C-excavation 
sand mine, so some regions are bare without 
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vegetation. Mining activities that are still 
active have partially eroded other types of 
land cover, turning them into mining sites, 
especially in areas where the sand has not 
been utilized. 

The sub-catchments with the largest 
shrubs area are the Melilit, Gede 
Tampuriang, and Blingkang sub-catchments 

with 814,39 ha or 21,25%, 320,86 ha or 25,48% 
and 241,96 ha or 12,94% of their area. Similar 
to 2015, shrubs type land cover condition is 
associated with dryland forest, dry-field, 
and bare-land. This can be seen in the sub-
catchment, which has the largest area of 
shrubs and dryland forest, dry-field, and 
bare-land.

 
Table 1. Land cover in the Batur Catchment area based on 

Landsat 8 OLI/TIRS Image in 2015 

No Land-Cover Type 
Land-Cover Area (ha) Land-Cover Area (%) 

2015 2021 2015 2021 

1 Built-up Area 298,09 604,1 2,93 5,93 
2 Dry field 2.955,53 2.525,11 29,01 24,79 
3 Bare Land 1.618,29 2.070,54 15,88 20,32 
4 Shrubs 1.422,3 1.638,02 13,96 16,08 
5 Dryland Forest 2.436,3 1.740,01 23,03 17,08 
6 Lake 1.547,34 1.610,07 15,19 15,80 
7 Total 10.184,85 10.184,85 100 100 

(Source: Image Analysis, 2021). 
 

Table 2. Matrix of Land-cover Change in The Batur Catchment area Based on Landsat 8 
OLI/TIRS Image 2015-2021 in Hectares 

LC Type 
2015 

LC Type 2021 

Bu Df Bl Sh Dlf Lk Total t1 Loses 

Bu 151,5 91,12 18 0 21,81 15,66 298,09 146,59 

Df 254,96 1.953,63 637,47 0 107,22 2,25 2.955,53 1001,9 

Bl 78,12 36,18 1.359,45 139,95 3,15 1,44 1.618,29 258,84 

Sh 75,33 286,14 50,22 856,36 149,81 1,44 1.419,3 562,94 

Dlf 38,88 158,04 4,68 638,53 1.456,58 49,59 2.346,3 889,72 

Lk 5,31 0 0,72 0,18 1,44 1.539,69 1.547,34 7,65 

Total t2 604,1 2.525,11 2.070,54 1.635,02 1.740,01 1.610,07 10.184,85  

Gain 452,6 571,48 711,09 778,66 283.43 70,38   

Net 
change 

306,01 -430,42 452,25 215,72 -606,29 62,73   

(Source: Image Analysis, 2021). 
 

Information 
LC = Land-cover 
Bu= Build-up area 
Sh = shrubs     
Bl = Bare land    
Df = Dry field   
Dlf = Dryland Forest     
Lk = Lake 
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Table 3. Land-cover in the Sub Catchment area Batur Based on  
Landsat 8 OLI/TIRS Image in 2015 

Sub 

Catchment 

area 

Land-Cover Type 

Bu Df Bl Sh Dlf Lk 

2015 2021 2015 2021 2015 2021 2015 2021 2015 2021 2015 2021 

Blingkang 59,49 77,13 1.073,49 932,03 2,76 250,03 212,8 241,96 520,93 367,42 0,02 0,92 

Gede 
Tampuriang 

12,05 99,86 141,3 116,72 675,62 595,73 273,41 320,86 156,75 124,22 0,04 1,78 

Kedisan 63,79 76,03 211,84 127,39 4,11 63,69 64,53 156,81 359,48 279,3 9,12 9,65 

Melilit 118,53 240,81 1.110,89 944,56 904,83 1.108,87 681,78 814,39 1.016,88 724,28 0 0 

Serongga 44,69 74,67 376,92 394,16 28,61 39,14 124,05 57,72 41,46 49,41 0 0,63 

Trunyan 10,84 25,38 29,52 7,07 0,75 11,12 57,49 69,21 202,42 192,61 14,17 9,8 

Amount 309,39 593,88 2.943,96 2.521,93 1.616,68 2.068,58 1.414,06 1661 2.297,92 1.737,2 23,35 22,78 

(Source: Image Analysis, 2021). 
 
Information 
LC = Land-cover 
Bu= Build-up area 
Sh = shrubs     
Bl = Bare land    
Df = Dry field   
Dlf = Dryland Forest     
Lk = Lake 
 
Accuracy Assessment of Multispectral 
Classification  

The accuracy assessment used the 
confusion matrix calculation method (Russell 
G. Congalton, 2019), providing producer, user, 
and overall accuracy. The Kappa coefficient 
was not recommended for accuracy 
assessment, so the value of the kappa 
coefficient was not included (Foody, 2020; 
Pontius & Millones, 2011). When mapped, the 
standard of the overall accuracy of land-cover 
classification is already determined, which is at 
least 85% (Giri, 2012). 

Land-cover data from the multispectral 
classification of Landsat 8 OLI/TIRS images in 
2015 was tested using QuickBird images 
recorded in 2015, while land-cover data in 2021 
was tested using field data and interviews in 
2021. The accuracy of maps generated from 
remote sensing techniques is affected by 

several factors, including site-specific 
characteristics (Hsiao & Cheng, 2016; 
Millard & Richardson, 2015), choice of data 
classifier (Heydari & Mountrakis, 2018; 
Khatami et al., 2016), and selection of 
training data for classification (Hsiao & 
Cheng, 2016; Shao & Lunetta, 
2012). Integrating earth observation and 
other data from multiple sources is required 
to derive information with sufficient 
accuracy and detail over large areas (Herold 
et al., 2016). 

 The comparison of the accuracy of land-
cover classification is shown in Table 4. The 
overall accuracy test in 2015 was 82,63%, while 
in 2021, the result of the accuracy assessment 
was 89,57%. This shows that maximum 
likelihood classification is more realistic than 
random classification (Tadele et al., 2017).  
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Figure 3. Land-cover Map Batur Catchment area in 2015 (Source: Image Analysis, 2021) 

 

 
Figure 4. Land-cover Map Batur Catchment area in 2021 (Source: Image Analysis, 2021) 

 
The accuracy value in 2015 is lower than 

in 2021, and this is because some of the research 
areas in the 2015 Landsat 8 OLI/TIRS imagery 
were covered with clouds, causing 
misclassification, in contrast to the Landsat 8 
OLI/TIRS image data in 2021, which was free 
from cloud disturbances. However, based on 
the overall accuracy value, the land-cover class 

in 2015 does not meet the minimum standard 
for land-cover class classification, while the 
land-cover class in 2021 meets the minimum 
standard for the land-cover category. Cloud-
covered area of 2015 Landsat OLI/TIRS 
imagery could increase the error value in the 
classification results (Zylshal et al., 2016) and 
making less accurate the interpretation 
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(Danoedoro et al., 2020), which resulting lower 
accuracy.  

The difference in time between image 
recording and the accuracy of sampling in the 
field affects the planting period of seasonal 
plants in the Batur catchment area. Some 
locations were dry-field during image 

recording but bare-land during selection 
because they had not been planted. This 
difference affects the classification results and 
the level of accuracy associated with the 
spectral differences reflected by objects before 
and after harvesting (Lu et al., 2016).

 
Table 4. Comparison of Accuracy Parameters Landc-cover Classification in 2015-2021  

LC 
Classification 

2015 2021 

PA UC C O OA PA UC C O OA 

Bu 63,16 73,28 26,72 36,84 

82,63% 

84,21 72,43 28,57 15,79 

89,57% 

Df 71,64 72,24 27,76 23,39 83,61 84,3 15,7 16,39 

Bl 92,16 94,84 5,16 7,84 85,83 92,79 7,21 14,17 

Sh 74,36 38,16 61,84 25,64 77,08 97,37 2,63 22,92 

Dlf 76,92 81,74 18,26 28,36 100 96,34 3,66 0 

Lk 93,59 99,69 0,31 6,41 100 100 0 0 

(Source: Image Analysis, 2021). 
 

Information 
PA = Produser accuracy 
UC= User accuracy 
C = Commission 
O = Omission 
OA= Overall accuracy 

 

 
Figure 5. Land-cover Change Chart Batur Catchment area in 2015-2021 

(Source: Image Analysis, 2021). 
 

Identification of Land-cover Change 
Identification of land cover spatial 

changes uses the change detection feature in 

ENVI 4.5 software. This feature is a change 

detection method that compares post-

classification spectral data. The change 

detection method using spectral data is 

considered capable of producing higher 

accuracy than change detection using 

patterns (Viana et al., 2019; He et al., 2019). 
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In this study, the authors focused specifically 

on the types of land cover changes that 

occurred. 
Based on the results of the 

crosstabulation in Table 3 and Figure 5, four 

types of land cover have increased the area 

from 2015-2021, which are bare land by 

452,25 ha or an increase of 27,95% from the 

previous area, built-up land by 306.01 ha or 

102,66 %, shrubs by 215,72 ha or 15,20% and 

lakes 62,73 ha or an increase of 4,05% from 

the previous area. Furthermore, other types 

of land cover have decreased in the area. 

Namely, dryland forest decreased by -606,29 

ha or -25,84% of the prior area and dry field 

by -430.42 ha or 14,56% of the previous area. 

When viewed in terms of proportions in 

Table 3, in 2015, the type of land cover was 

dominated by dry-field with an area of 

29,02%, followed by dryland forest at 

23,04%, bare-land 15,89%, the lake at 15,19%, 

shrubs at 13,94%, and 2,93% built-up land. 

Similarly, in 2021 the type of land cover is 

still dominated by dry-field with an area of 

24,79%, followed by bare-land 20,33%, 

dryland forest at 17,08%, shrubs at 16,05%, 

lakes at 15,81%, and built-up land at 5,93%. 

Based on this description, the proportion of 

dryland forest decreased by -5,95% and dry-

field by 4,23%, while bare-land increased by 

4,44%, shrubs by 2,12% and built-up land 

increased by 3% and lakes increased by 0,62 

%. 

Tables 2 and 3 show that there is a 

change in land cover in the Batur catchment 

for a period of six years from 2015 to 2021. 

The increase in the area occurred in the types 

of built-up land cover, bare land, shrubs, and 

lakes. Meanwhile, dry-field and forests tend 

to decrease in area. 

Built-up land-cover type is increasing 

throughout the Batur catchment area. The 

biggest change was in the Melilit sub-

catchment, which increased by 122,28 ha 

from the previous area, while the lowest was 

in the Kedisan sub-catchment, which was 

12,12 ha. Furthermore, dry field decreased 

for most of the area; the highest was in the 

Melilit sub-catchment, which fell by -166.33 

ha, and the lowest was in Trunyan sub-

catchment by -22,45 ha. However, the dry-

field area has increased in the Serongga sub-

catchment area, supplemented by 17,24 ha 

from the previous area. 

Most of the bare-land area has 

increased, the highest is in the Blingkang 

sub-catchment at 247,27 ha, and the lowest is 

in the Trunyan sub-catchment at 10,37 ha. 

However, bare land in the Gede Tampuriang 

sub-catchment decreased by -79,89 ha. Like 

bare-land, most of the shrubs area has 

increased; the highest is in the Melilit sub-

catchment of 204,04 ha, and the lowest is in 

the Trunyan sub-catchment with 11,72 ha, 

but the area of Serongga sub-catchment is 

decreased by -66,33 ha. Finally, the dryland 

forest with the highest reduction in area is in 

Melilit Sub-catchment at -292,6 ha, and the 

lowest is in Trunyan Sub-catchment at -9,81 

ha. However, in the Serongga sub-

catchment, the area of dryland forest is 

increased by 7,95 ha. 

Tables 1 and 2 show the phenomenon of 
a spurious change, for example, changes in 
land cover that are built up into dry dry-field 
or built-up areas into forests. This is very 
difficult to happen, so changes in the ostensibly 
could cause it. Different images with two other 
recording times generally have other 
atmospheric conditions, including sun angles, 
height, and off-nadir distance, resulting in 
different illumination levels. This difference 
will produce changes as if the data were 
classified  (Zhu et al., 2021). Furthermore, 
(Sood et al., 2021) convey that changes occur 
due to slope variability, topographic 
roughness, and topographic effects (shadows). 

Differences in rainfall also play an 
essential role in detecting land cover changes. 
The rainfall in the 2015 recorded image in May 
was 36-44 mm, while the rain in May-June in 
2021 ranged from 0-33 mm (BMKG, 2021). This 
difference in rainfall results in humidity, which 
causes a spurious change (Zhu et al., 2021). 
Different humidity in the rainy and dry 
seasons results in significant differences in soil 
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moisture. It changes the location of shorelines, 
lakes, and rivers (Zhu et al., 2021), showing 
differences in visual appearance in these areas. 
In addition to several factors described 
previously, the changes seem to be caused by 
differences in the spectrum on cultivated land 
before and after harvest (Lu et al., 2016), 
disturbances from pests and diseases on 
cultivated plants and forests (Ren et al., 2012) 
and water turbidity (Chen et al., 2013). 

 

CONCLUSION 
Based on the results of the research, we 

concluded that there were changes in land-
cover types in the Batur Catchment area, 
including an increase of bare land cover by 
452.25 ha (27,95%), built-up area by 306.01 ha 
(102,66%), shrubs by 215,72 ha (15,20%), and 
the lake area by 62.73 ha (4,50%). 
Furthermore, dry-field area and dryland 
forest decreased by -430,42 ha (-14,56%) and 
-606,29 ha (25,84%). Land-cover change 
occurs in all sub-DATA areas of varying 
sizes.  

The land-cover classification accuracy 
assessment of Landsat OLI/TIRS images 
using the maximum likelihood method in 
2015 showed an accuracy rate is 82,63%, 
while in 2021, the accuracy rate was 89,59%. 
Cloud disturbances in 2015 image data 
greatly affected land-cover classification 
accuracy for that year, as seen from the lower 
accuracy rate compared to 2021. 
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