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 Mangroves can store carbon effectively with a value of 
about 1,023 Mg C/Ha and become one of the richest forests 
that store 4-20 billion tons of blue carbon globally. Remote 
sensing imagery can be used to map mangrove surface 
carbon stocks using radar and optical image sensors. 
Generally, forest carbon on earth is stored in two places, 
namely above the surface (Above Ground Carbon, AGC) 
and below the surface (Below Ground Carbon, BGC). This 
study aims to estimate the surface carbon stock of 
mangroves using multisensory imagery using the Random 
Forest method in the Clungup Mangrove Conservation 
(CMC) area, Malang Regency, East Java. Four vegetation 
indices (IRECI, NDI45, NDVI, SAVI), single band, and 
VV VH polarization were used as predictive variables. 
Estimating the carbon stock mangrove value using 
Sentinel-1 imagery produced 2,126 tons of C with R² 0.11. 
Meanwhile, Sentinel-2 produces an estimated carbon value 
of 2,025 tons C with an R² of 0.22. The estimation model 
using Sentinel-2 shows a better evaluation value with a 
Root Mean Squared Error (RMSE) of 0.89 and a Mean 
Absolute Error (MAE) of 0.75. The IRECI vegetation 
index is the most important variable in estimating carbon 
stocks. The results of the mapping accuracy of the Sentinel-
1 model show a value of 34.73% and Sentinel-2 35.03%. 
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INTRODUCTION 

Vegetation is a controller in efforts to 
reduce carbon emissions in the atmosphere, 
one of which is mangroves. Indonesia is one 
of the countries that has the longest 
coastline, so mangrove ecosystems grow 
throughout the Indonesian archipelago 
(Yuniastuti et al., 2012). Mangroves can 
reduce greenhouse gas emissions and 
mitigate climate change because they can 
filter pollutants and absorb carbon dioxide 
(CO2) released into the atmosphere (Pham et 
al., 2019).  

Generally, forest carbon on earth is 
stored in two places, namely above the 
surface (Above Ground Carbon, AGC) and 
below the surface (Below Ground Carbon, 
BGC). Mangroves can store carbon more 

effectively than other vegetation with a 
value of around 1,023 Mg C / Ha, so 
mangrove ecosystems are considered one of 
the richest forests capable of storing 4-20 
billion tons of blue carbon globally (Donato 
et al., 2011). 

Information on carbon absorption in 
mangroves is very important to obtain as 
input in mangrove conservation and 
management efforts. Remote sensing is a 
technological innovation that can accurately 
and measurably assess the condition of the 
earth's surface. One of them is calculating 
forest carbon stocks using satellite imagery 
data. Using satellite imagery has the 
advantage of monitoring a large area 
geographically, time efficiency, high 
accuracy, and effectiveness in measuring 
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biomass in large forest areas (Pham et al., 
2018). 

The mangrove surface carbon stocks 
can be calculated using optical and radar 
imagery data. Visual imagery data is widely 
used for surface carbon estimation because it 
has several advantages, namely high spatial 
resolution, multispectral channels, and 
multi-temporal data. So that from these data, 
various methods such as single channel 
analysis and index transformation can be 
applied to obtain accurate results even 
though they are limited by constraints on 
atmospheric effects (Alan et al., 2017; Kamal 
et al., 2016). 

On the other hand, radar imagery has 
the advantage of being able to penetrate the 
clouds so that recording can be carried out at 
any time. This imagery effectively overcame 
atmospheric disturbances, especially in 
tropical regions. However, it is limited to the 
number of channels and has a wide 
recording scope, so special techniques are 
needed for its use (Su et al., 2016; Taylor & 
Lu, 2007). 

Based on the advantages and 
disadvantages possessed by optical and 
radar imagery data, this study tried to 
compare the multisensor imagery data of 
Sentinel-1 (radar) and Sentinel-2 (optics) to 
predict the value of mangrove surface 
carbon stock. Sentinel-1 and Sentinel-2 
images have the potential for mangrove 
observations, namely with 13 multispectral 
channels with three red edge channels 
sensitive to vegetation and cross-
polarization of VV VH radar data related to 
vegetation structure (Alan et al., 2017; 
Ananto et al., 2019). 

Optical imagery can estimate 
mangrove surface carbon stocks through 
spatial modelling. Many studies have been 
carried out to predict AGC using parametric 
methods, namely regression equations and 
non-parametric methods, namely machine 
learning (Nuthammachot et al., 2020; Vafaei 
et al., 2018). 

The random forest algorithm is one 
machine learning technique that can create 
models without relying on the distribution 

of data used and a fast computing system 
(Breiman, 2001). Previous studies using 
machine learning have proven effective for 
spatial modelling of mangrove surface 
carbon stocks and can improve model 
accuracy compared to parametric methods 
(Heumann, 2011; Lu et al., 2016). So, the 
purpose of this study is to estimate the 
carbon stock of mangrove surfaces using 
multi-censor images of Sentinel-1 and 
Sentinel-2 using random forest algorithms. 
 
RESEARCH METHODS 
Study Area 

The research area is located in 
Clungup Mangrove Conservation (CMC) 
Malang Regency, East Java, under the 
management of the Bhakti Alam Sendang 
Biru Foundation (Figure 1). CMC is located 
in Sendang Biru hamlet, Tambakrejo village, 
Sumbermanjing Wetan district. The study 
location is located in a geographical area 
with coordinates 112 o 38' - 112 o 43' BT and 
eight o 26' - 8 o 30' LS with a CMC area is ± 81 
Ha and a coastal border covering an area of 
± 117 Ha, with the main vegetation being 
mangroves and mixed gardens. 

The CMC area has a variety of 
mangrove species, so it has a high potential 
to store large amounts of carbon. In addition, 
the study area has a unique landform 
because of the karst landform, so there are 
hills or domes surrounding mangroves, and 
it is a conservation area that has recovered 
from the threat of land degradation so that 
the ecosystem is protected. In summary, the 

flow of this study can be seen in figure 2. 

 

  
Figure 1. Map of Research Location and Plot   

Position of Field Samples 
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Figure 2. Research Framework 

 
Field Data 

Field sample data collection was 
carried out in October 2021 in 39 evenly 
distributed sample plots determined based 
on the purposive sampling method. The 
sample plot size is 20 m x 20 m, following the 
spatial resolution of the imagery. 
Measurements of Diameter at Breast Height 
(DBH), tree height, and vegetation canopy 
density were performed to determine the 
actual biomass value using a common 
allometric equation developed by 
(Komiyama et al., 2005). 

Determining location coordinates is 
carried out with the Global Navigation 
Satellite System (GNSS) receiver. Position 
measurement uses the average waypoint 
method or calculates the middle coordinate 
position at the size time for 5 minutes to 
minimize the plotting error of the sample 
plot coordinates. The distribution of field 
sample points can be seen in Figure 1. 

 
Data Processing 

Sentinel-1 and Sentinel-2 imagery data 
used in this study are free to access through 
https://scihub.copernicus.eu/. Sentinel-2 
imagery data is at level 1C while Sentinel-1 
is at ground range detected high resolution 
(GRDH) level, which was acquired on 
September 22, 2021. Image data processing 
uses Sentinel Application Platform (SNAP) 
software developed by the European Space 

Agency (ESA). Sentinel-2 image processing 
by utilizing the Sen2cor plugin, which will 
automatically perform radiometric 
corrections from the top of atmosphere 
(TOA) level to the bottom of atmosphere 
(BOA) to eliminate the influence of sensor 
errors when recording images on the earth's 
surface (Pflug et al., 2016). 

For Sentinel-1 imagery, data 
processing is carried out through several 
stages: geometric correction, speckle 
filtering, terrain correction, and radiometric 
correction. The geometric and radiometric 
correction of the image uses the range 
doppler terrain correction method to correct 
the image's position according to the earth's 
surface. Lee filter with window size 5x5 is 
used to reduce the effect of spots from flat 
radar (Filipponi, 2019). Calibration of the 
image using sigma nought and gamma 
nought. Furthermore, the last stage is 
converting the DN value (digital number) 
into dB units (disable) which is the 
backscatter coefficient. 

It is necessary to process radiometric 
corrections on the imagery to adjust the 
spectral reflection value of the image pixels 
to the spectral reflection of the 
corresponding object. The radiometric 
correction process is divided into two stages: 
radiometric calibration to convert the digital 
number (DN) value into reflectant value and 

https://scihub.copernicus.eu/
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atmospheric correction to minimize the 
effect of atmospheric additives (Danoedoro, 
1996). 

The imagery data used in the 
resampling became 20 m. The 
transformation of 4 vegetation indices on 
Sentinel-2 images and single-channel 
reflectance were used as variables for 
mangrove surface carbon stock estimation. 
Meanwhile, the prediction variables from 
radar data utilize VV VH polarization. For 
more details on the prediction variables of 
mangrove carbon stocks can be seen in Table 
1. 

 
Table 1. Mangrove Carbon Stock Prediction 

Variables 

Images Variable Prediction 

Sentinel-2 
IRECI =

NIR − R

RE/RE
 

𝑁𝐷𝑉𝐼 =
NIR − R

NIR + R
 

NDI45 =  
RE − R

RE + R
 

SAVI =  
NIR − R

NIR + R + L
x 1 + L 

 B2, B3, B4, B5, B6, B7, B8, 

B8A 

Sentinel-1 VV VH 

Note:  
NIR = Near Infrared   RE= Red Edge 
L = Optimal Value 0,5  R = Red 

 
Mangrove Carbon Stock Modeling 

The spatial model of mangrove surface 
carbon stocks is produced using machine 
learning algorithms using the random forest 
(RF) method. The RF method has advantages 
with a non-heavy computational load, thus 
creating a model based on the classification 
results of the decision tree. The division of 
data samples is randomly derived from 
observational data, so it does not affect the 
number of variables and values used. Three 
parameters must be optimized in the use of 
RF to get good results, namely tree (amount 
of data), number of regression trees, and try 
(number of different predictors tested 
(Mutanga et al., 2012). 

 

Carbon Estimation Model Accuracy 
Carbon stock estimation models need 

to be evaluated to compare the performance 
of the models obtained. The RMSE (root 
mean square error) method is used to assess 
the results of a prediction model because it 
can distinguish observation data and 
predicted data (Byrd et al., 2014). RMSE can 
determine the magnitude of the margin of 
error and evaluate the performance of the 
created model as a whole (Arjasakusuma et 
al., 2020). The RMSE calculation can be seen 
in equation 1. 

 

  RMSE = √
∑ (𝑦𝑖−ỹ𝑖)²𝑛

𝑖=1

𝑛
  …….…………….(1) 

 
Note: 
Yi: actual data value 
ỹi: prediction data value 
n: the amount of data 

 
RESULT AND DISCUSSION 
Sentinel-1 Carbon Estimation 

The estimation of carbon values using 
Sentinel-1 radar data obtained results of 15 
tons C / Ha and a maximum of 37.5 tons C / 
Ha. The total carbon value in the study area 
is 2,126 tons C. Spatially, the map of the 
estimated model results can be seen in 
Figure 3. The relationship between the 
predicted results in predicting the carbon 
value of image data can be explained 
through the coefficient of determination (R²). 

In this study, the low correlated R² 
value of 0.11 means that Sentinel-1 data can 
only affect 11% of surface carbon estimates, 
while other variables influence the 
remaining 89%. The low correlation value of 
radar data can be affected by saturation in 
the vegetation canopy, making radar wave 
sensitivity weak in predicting biomass 
(Ananto et al., 2019). 

Other research (Ghosh & Behera, 2018) 
using Sentinel-1 data also obtained low R² 
value results due to the C-Band's ability to 
penetrate the canopy. The backscattering 
from the radar can only penetrate the canopy 
and upper branching of the vegetation, so 
the sensitivity is lost and affects the value of 
the carbon estimation.  
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Figure 3. Model Map AGC Sentinel-1 

 
VV polarization plays more of a role in 

estimating carbon than VH polarization. VV 
polarization is more sensitive to scattering 
volumes from the ground and water parts. 
In the study area, there are areas with low 
vegetation density, so the scattering of 
signals from soil surface roughness is more 
dominant  (Laurin et al., 2018). The results of 
the study conducted by  (Omar et al., 2017) 
also showed that the polarization of VV is 
more influential than VH with a low 
correlation value, namely R² = 0.091. 
Meanwhile, VH polarization plays a role in 
estimation due to the scattering volume of 
biophysical vegetation, such as branching 
and leaves at the level of surface roughness. 

Sentinel-1 radar data in this study has 
not shown a good correlation between the 
predicted carbon and the carbon from the 
field. This can be influenced by several 
factors, such as limited data polarization, the 
effect of C-band wavelengths that have low 
penetrating power on the canopy, and 
backscatter from the ground and saturated 

mangrove areas. In addition, the influence of 
vegetation density in the study area can 
affect the predicted value, and the 
backscattering effect on the soil greatly 
affects forest areas with low density (Of et 
al., 2013).  

 
Sentinel-2 Carbon Estimation 

The analysis of mangrove surface 
carbon stock estimates using Sentinel-2 
optical data get a minimum value of carbon 
reserves, namely 10 tons C / Ha and a 
maximum of 40 tons C / Ha. The total value 
of the overall carbon stock is 2,025 tons C. 
This value is lower than the previous study 

(Mahyatar, 2021), getting a total surface 
carbon stock value of 3,635.17 tons C using 
WorldView-2 high-resolution imagery. A 
more spatially clear map of the AGC model 
results can be seen in Figure 4. 

A high spatial resolution would better 
present the object's state on the earth's 
surface. The difference in the predicted 
value of carbon stocks can be influenced by 
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the characteristics of the data and the 
methods used. WorldView-2 imagery has a 
higher spatial resolution of 2 m compared to 
the spatial resolution of Sentinel-2 images, 
which is 20 m, so the number of image pixels 
used will be more than the lower resolution. 

The value of the determination 
relationship between the predicted carbon 
and the predicted result gets a correlation 
value of R², which is 0.22. The correlation 
value explains that Sentinel-2 imagery data 
can only affect 22% of mangrove surface 
carbon estimates, while other variables 
influence more than 78%. In this study, the 
IRECI vegetation index became the most 
important variable in estimating carbon 
stocks compared to single-band channels. 
This is due to the use of red edge channels 
that have good sensitivity to vegetation and 

are highly correlated with mangrove 
canopies (Pham et al., 2020). 

The vegetation index used to predict 
carbon values has an important role and is 
an important variable. This is done by 
research (Pham et al., 2020), obtaining 
results that vegetation indices can help 
predict forest surface carbon stocks. The 
vegetation index can reduce the effects of 
reflectance caused by external conditions of 
the field, such as shadows, to improve the 
relationship between carbon estimation 
values and vegetation indices (Taylor & Lu, 
2007). 

As for the single channel, it is not an 
important part of estimating carbon reserves 
because the wavelengths owned are not 
optimal in capturing reflection changes due 
to the influence of the chlorophyll content of 
the canopy (Frampton et al., 2013). 

 

Figure 4 . Model Map AGC Sentinel-2 

The results showed the estimation of 
carbon stocks using Sentinel-2 optical data, 
the most influential of which was the 
vegetation index. This is because Sentinel-2 
imagery has the advantage of 3 red edge 
channels which are very effective in 
monitoring vegetation health through a 
canopy. Hence, it can potentially have a 

good correlation relationship with biomass. 
But in this study, the correlation value 
generated in predicting the carbon stock 
value of the image has a weak relationship 
even though the variable of the vegetation 
index can become the most important 
prediction variable. 
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AGC Model Evaluation 
The performance of the spatial model 

of estimating the resulting carbon stock was 
assessed using RMSE. RMSE is used to 
determine errors from the resulting model 
and in conjunction with mean absolute error 
(MAE) to determine variations of model 
errors (Pham et al., 2020). 

The resulting model error against the 
difference between the measured carbon 
data and the predicted one so that the best 
model will produce a high R² value. The 
results of predictions and tests of agc models 
generated from Sentinel-2 and Sentinel-1 
images in this study can be seen in Table 2.  

 
Table 2. AGC Model Evaluation 

Prediction 
Data 

AGC Model 

Sentinel-1 Sentinel-2 

R² 0,11 0,22 
RMSE 1,02 0,89 
MAE 0,84 0,75 

Test Data   
R² 0,01 0,18 

RMSE 1,45 1,25 
MAE 1,20 1,08 

 
Based on Table 2, the correlation value 

of R² from the results of prediction data 
using Sentinel-2 imagery produces values of 
0.22 and Sentinel-1, which is 0.11. This value 
is better when compared to the test data 
results, namely 0.01 and 0.18. The R² value is 
still relatively small, so the matter has not 
been able to perfectly explain the 
relationship between the predicted data and 
the actual data. 

Meanwhile, the results of this study's 
RMSE and MAE values from prediction data 
and test data are inversely proportional to 
the R² value. The predicted data value 
development is lower than the test data. 
According to (Pham et al., 2018), lower 
RMSE and MAE values show a better 
regression model, while the difference 
between small arms and mae values shows a 
smaller variation in error rates. The results of 
this study showed a lower error rate because 
the difference in values resulting from 
RMSE, and MAE was not too significant. 

This indicates that the carbon stock model 
produced with predictive data has obtained 
good results, although the correlation value 
of R² is still relatively small. 

 
Accuracy Test 

Accuracy tests are carried out to 
determine the level of accuracy and 
confidence of the model from the prediction 
results that have been produced. This study 
used test data of 12 data samples for 
accuracy tests. The random forest method 
obtains the test data through automatic data 
sharing. This study used the standard error 
of estimate (SE) method for the accuracy test 
and plot goodness of fit 1: 1. Calculations of 
the accuracy test with SE of the resulting 
carbon prediction model can be seen in Table 
3. 

 
Table 3. Carbon Model  Accuracy Test 

  

Carbon Model  

Sentinel-2 Sentinel-1 

SUM 15,23 15,37 
Count 12 12 
SE (ton C/piksel) 1,23 1,24 
Mean 1,29 1,29 
Stdev 1,15 1,15 
CL95% 0,60 0,60 
Upper Range 1,90 1,90 
Lower Range 0,68 0,68 
Max Error 1,78 179,73 

Min Error 64,96 65,26 

Max Accuracy 35,03 34,73 
Min Accuracy -78,90 -79,73 

 
Based on the results of the model 

accuracy test from Sentinel-2, it got an SE 
value of 1.23 tons C / pixel and Sentinel-1 
1.24 tons C / pixel. The smaller the value, the 
better. On the contrary, if the greater the 
matter, it is not good. A low SE value can be 
attributed that the result of the created 
model is good with minor errors. The 
maximum value of accuracy is 35.03%. 
Accuracy values that are not too high can be 
relieved by the uneven distribution of 
samples to the density of vegetation in the 
field. 
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While the results of the accuracy test 
using the plot method of the goodness of fit 
1: 1 can be seen in Figure 4. 

 

 

 
Figure 4. Graphic plot goodness of fit 1:1 (a) 

Sentinel-1 dan (b) Sentinel-2 
 

The results of the accuracy test with 
the 1: 1 plot method showed the effects of 
predictions that the pattern tends to be 
overestimated. Field data measurements can 
influence the cause of overestimated results 
of this study in the form of mangrove 
vegetation DBH, which is limited to a 
minimum size of 15 cm in diameter, while 
spectral reflections from the image can 
detect vegetation with a smaller diameter 
due to the influence of the canopy density 
effect. 

 
CONCLUSION 

The calculation of mangrove carbon 
stocks is carried out without considering 
mangrove species. The results of carbon 
estimation with Sentinel-2 are 10-40 tons C / 
Ha and 2,025 tons C. While the estimation 
results using Sentinel-1 data get a result of 
15-37.5 tons C / Ha and 2,126 tons C / Ha. 
The IRECI vegetation index is the most 
important prediction variable for mangrove 

carbon. Estimated carbon stocks with 
Sentinel-2 showed better results than 
Sentinel-1.  
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