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 Slope stability and land movements, commonly referred to as 
landslides, are natural hazards that involve the shifting of 
materials like soil, rock, and debris, primarily caused by the 
force of gravity. This research utilized both qualitative and 
quantitative approaches, focusing on spatial analysis by 
examining primary and secondary data derived from satellite 
imagery, observations, and pertinent institutions. Processing 
of the collected data using specialized software like Global 
Mapper 20, ArcGIS 10.8.1, and ER Mapper 8.1. The findings of 
this investigation disclosed that a significant portion of 
Ambon City, roughly 51.63% of its area, exhibited high 
susceptibility to landslides. Conversely, only about 16.26% of 
the total area demonstrated very low or low vulnerability. 
Similar trends were observed in urbanized regions, where the 
majority, around 39.01%, were classified as highly vulnerable 
(Z-4). In contrast, approximately 35.09% showed very low 
vulnerability (Z-1), and 11.89% depicted low vulnerability (Z-
2). The study's findings clearly highlight a critical situation in 
Ambon City, where a substantial 89% of its territory, 
characterized by mountainous landscapes, is experiencing a 
markedly increased frequency of landslides. Given these 
concerning insights, it is absolutely essential for government 
authorities to engage in rigorous spatial planning. This should 
involve redirecting development efforts towards areas 
identified as safer, away from high-risk zones. Furthermore, 
the government must enforce and adhere to policies that not 
only mitigate landslide risks but also promote sustainable 
development, ensuring the long-term safety and resilience of 
Ambon City against such natural disasters. 
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INTRODUCTION 

Landslides have garnered significant 
attention due to their status as one of the 
most prevalent natural disasters worldwide 
in terms of both human casualties and socio-
economic devastation (Nefeslioglu et al., 
2008;  Shahabi et al., 2014; Benchelha et al., 
2020). These events primarily stem from 
physiographic conditions and commonly 
manifest during rainy seasons (Moreover, 
rapid population growth (Lombardo et al., 
2019),  has exacerbated their impact, leading 
to thousands of deaths and substantial 
infrastructure damage annually across the 
globe (Juang et al., 2019). Landslides not 
only result in fatalities and structural 

destruction but also possess the potential to 
alter landscapes significantly. Regional 
topography, soil composition, vegetation, 
and land use significantly influence and 
hasten the occurrence of landslides (Lavan et 
al., 2021). 

Yearly, landslides constitute a 
recurring natural phenomenon worldwide. 
For instance, these events claim around 200 
lives annually in the Himalayan, resulting in 
economic losses surpassing the US $1 billion 
(Tran et al., 2021). Meanwhile, according to 
the National Geological Hazard Bulletin of 
China, between 2007 and 2016, an average of 
762 individuals were reported dead or 
missing each year due to intense landslides 
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(He et al., 2020). In Indonesia, based on data 
from the National Disaster Management 
Agency (BNPB) from 2011 to 2015, there 
were 2,425 landslide incidents across 
provinces such as Central Java, West Java, 
East Java, West Sumatra, and East 
Kalimantan (BNPB, 2016). 

Natural hazards refer to perilous 
natural occurrences within a specific time 
and space (Bhat et al., 2019). Among these, 
landslides represent hazardous events 
involving the movement of rock masses, 
debris, or soil down a slope under the 
influence of gravity (Varnes, 1978; Guzzetti 
et al., 2005; Benchelha et al., 2020). Often 
observed on hillsides (Ahmed et al., 2020). 
The initiation of slope movements results 
from intricate forces acting within the rock 
or soil mass on the slope (Cruden, 2018). 
wherein movement transpires when shear 
stress surpasses the material's strength, 
differing from soil erosion mechanisms 
(Devi, 2020). This concept of landslides 
encompasses the movement of material 
down a slope (Enigda & T, 2021). 

In recent decades, advancements in 
remote sensing techniques and Geographic 
Information Systems (GIS) have significantly 
contributed to delineating areas prone to 
landslides, particularly in mountainous 
regions (Tewari & Misra, 2019). 
Additionally, GIS facilitates spatial data 
processing crucial for creating landslide 
hazard inventory and zoning maps (Van 
Westen, 1993; Singh, 2013; Uvaraj & 
Neelakantan, 2018). 

Remote sensing involves capturing, 
measuring, and analysing images and digital 
representations of energy patterns emitted 
from sensor devices without direct contact, 
aiming to gather precise information about 
objects and the environment (Yadav et al., 
2016). These systems are categorized into 
two groups based on technical solutions, 
with passive systems measuring existing 
radiation, such as solar radiation 
(Martensson, 2011). On the other hand, 
Geographic Information Systems (GIS) are 
utilized to collect, process, and integrate 
data and rapidly display outcomes in 
geographically referenced maps and reports 
(Sing et al., 2016). 

Ambon, Indonesia, characterized by 
its physiography, predominantly comprises 
hilly to mountainous terrain, encompassing 
approximately 89% of the area with steep 
slopes, while only about 11% constitutes 
plains. This physiographic setup often 
triggers landslides, a natural 
geomorphological process inherent to 
mountainous landscapes (Wang & Li, 2017). 
However, the limited available land in 
Ambon City intensifies land conversion, 
particularly in hilly areas that typically serve 
as conservation zones. 

Researchers have extensively 
investigated landslide occurrences in 
various locations using diverse analytical 
techniques and approaches. (Tran et al., 
2021)  conducted mapping of landslide 
vulnerability employing Naïve Bayes (NB), 
Multilayer Perceptron (MLP), and 
Alternating Decision Tree (ADT). (Lavan et 
al., 2021) Utilized Geographic Information 
Systems (GIS) to explore the correlation 
between rainfall runoff and landslides. 
(Tanizaki & Ayu, 2021) utilized remote 
sensing and GIS alongside the Analytical 
Hierarchy Process (AHP). (Enigda & 
Suryanarayana, 2021) assessed slope 
instability issues using the Main Ethiopian 
Rift (MER), while  (Gong et al., 2021) devised 
a method to analyze landslide stability 
derived from rainfall and vegetation root 
systems. 

The novelty in this research lies in the 
analytical approach that integrates GIS 
techniques with satellite imagery, 
topographical information, and other 
geospatial data to identify and classify 
landslide vulnerability in Ambon City. This 
study doesn't solely rely on a single 
landslide-causing factor. Still, it integrates 
several factors such as rainfall, slope 
inclination, soil type, and rock type to 
understand the risk level holistically. 
Furthermore, the analysis of patterns and 
distribution of landslide-prone areas is 
conducted by linking these factors with the 
development of built-up areas over time, 
providing a deeper understanding of the 
impact of urbanization on natural disaster 
vulnerability. The comprehensive 
integration of data and a multifactorial 
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approach in this research strengthens the 
understanding of landslide vulnerability 
complexity, making it distinct and 
innovative compared to previous studies 
that tended to focus on only one or two 
factors. 

 
RESEARCH METHODS 

This research employed both 
qualitative and quantitative analytical 
methodologies with a spatial approach. The 
study encompassed interpretive and survey-

based research methods, analysing primary 
and secondary data sourced from satellite 
imagery, on-site observations, and relevant 
agencies. A survey strategy was adopted, 
emphasizing observing and measuring 
variables essential for landslide analysis. 
The research was conducted from July to 
September 2022 in Ambon City (Figure 1), 
covering five administrative districts: 
Sirimau, Nusaniwe, South Leitimur, Ambon 
Bay, and Ambon Baguala Bay, for data 
collection and observation purposes. 

 

 
 

 
 

 
Figure 1. Research Location a. Ambon Island Map, b. Administrative Map Ambon City and 

c. Province Map Maluku (Source: Data Processing, 2023). 
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Table 1. Data Used in Research 
No Data Source 

Secondary Data 
1. Landsat imagery       https://www.usgs.gov/landsat-missions/landsat-8 
2. SRTM imagery          https://www.earthdata.nasa.gov/sensors/srtm 
3. Slope maps SRTM imagery processing 
4. Land Use Map Landsat Satellites processing   
5. Soil maps Faculty of Agriculture Unpatti (1985; 
6. Geological maps Mining and Energy Office of Ambon City, 2022 
7. Rainfall maps Ambon Pattimura Meteorological Station 
8. On-site observations On-site surveys 
9. GPS data GPS devices 

10. Digital photographs Digital cameras 

The materials utilized in this study 
comprised Landsat imagery, Shuttle Radar 
Topography Mission (SRTM) imagery for 
creating slope maps, soil maps, geological 
maps, and landform maps at a scale of 
1:50,000, along with rainfall maps. These 
data were obtained from various sources 
including the Development Planning 
Agency at the Sub-National Level, Central 
Bureau of Statistics, and the Public Works 
Department. Research tools encompassed 
software applications such as Global 
Mapper 20, ER Mapper v. 8.1, ArcGIS 10.8.1, 
GPS devices, and digital cameras. The entire 
land area within Ambon City served as the 
research population, with land units selected 
for the research sample through an overlay 
approach. These land units were derived 
from overlaying land use maps, landforms, 
and slope data. 

The analysis process involved 
aggregating variable values to generate class 
intervals of five, enabling the classification of 
landslide vulnerability levels. Data analysis 
encompassed several stages. The 
preparatory phase involved diverse 
methods of data processing, commencing 
with the analysis of land-use maps, soil 
types, landforms, and geology. 
Subsequently, SRTM image data processing 
was employed to construct slope maps, 
while Landsat images underwent various 
processes including image splicing, 
geometric correction, radiometric correction, 
and image sharpening before being 
interpreted and outlined on the screen. 

The characteristics of the data 
analyzed in this study include Rain 

Intensity, Slope Gradient, Land Use, Soil 
Types, and Rock Types. Each variable has 
different classifications or category ranges to 
facilitate data grouping. For instance, Rain 
Intensity is divided into five classes based on 
millimeter ranges, while Slope Gradient is 
categorized into four distinct classes based 
on the percentage of slope inclination. Land 
Use, Soil Types, and Rock Types also possess 
specific class variations according to their 
respective types. This table serves as an 
important guide in organizing and 
classifying the data used in the research, 
allowing researchers to clearly understand 
the distribution and variations of each 
studied variable. The characteristics of this 
table can be seen in the following Table 2. 

In the effort to determine the classes of 
land sliding, a guideline based on the level 
of "Harkat total" is utilized. This approach 
aids in categorizing data according to the 
intensity or level of the evaluated aspect. 
This procedure involves grading across five 
parameters, where the highest harkat 
amounts to 15 and the lowest amounts to 7. 
To establish four classes, a divisional 
interval of three is required. Thus, the classes 
of land sliding can be determined using a 
four-unit value interval, as depicted in Table 
3. 

The utilization of this guideline 
enables researchers or stakeholders to 
structure data more systematically and 
classify the intensity of land sliding in 
greater detail. By establishing class ranges 
based on the predetermined Harkat total 
parameter, this method facilitates a more 
accurate assessment of landslide risk in 

https://www.usgs.gov/
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specific areas. These steps aid in depicting 
land conditions more clearly and support 
mitigation efforts or preventive measures 

that can be implemented to reduce the risk 
of land sliding impacts in a particular region.

Table 2. Characteristics of Research Data 
No Data Characteristics Class Score 
1. Rain Intensity 

• 0 -13.6 mm 
• 13.6 - 20.7 mm 
• 20.7 - 27.7 mm 
• 27.7 - 34.8 mm 
• >34.8 mm 

 
I 
II 
III 
IV 
V 

 
1 
2 
3 
4 
5 

2. Slope 
• Flat to sloping (0 – 8%) 
• Slightly tilted (8 – 15%) 
• Crooked (15 – 30%) 
• Very tilted (> 30%) 

 
I 
II 
III 
IV 

 
1 
2 
3 
4 

3. Land Use 
• Forest 
• Plantation 
• A built area 
• Mixed garden 
• Shrubs 

 
I 
II 
III 
IV 
V 

 
1 
2 
3 
4 
5 

4. Soil Types 
• Alluvial, Cambisol, Regosol, Gleysol 
• Cambisol, Latosol, Regosol 
• Latosol, Cambisol 
• Rendzina, Cambisol, Litosol 

 
I 
II 
III 
IV 

 
1 
2 
3 
4 

5. Rock Type 
• Alluvial deposit, sandstone 
• Serpentine group, diabase, and gabbro 
• Granite unit, Limestone unit 
• Andesite group, dacite, breccia 
• Loose materials 

 
I 
II 
III 
IV 
V 

 
1 
2 
3 
4 
5 

Source: (Yuniarta et al., 2015). 
                                 

Table 3. Landslide Classes and Criteria 
No. Criteria Total Dignity Classes 
1. Very low 7 - 9 I 
2. Low 10 - 12 II 
3. Moderate 13 - 15 III 
4. Hight 16 - 18 IV 

Source: Data Processing (2023) 
 

Field observations were conducted 
during the implementation phase to validate 
the accuracy of image interpretation, 
ensuring alignment with the actual field 
conditions, and measuring parameters that 
couldn't be ascertained from the images. 

Surveys were conducted across the research 
area, particularly focusing on regions where 
land use density or weather factors, such as 
cloud cover, impeded precise image 
interpretation. 
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Validation was performed to assess 
interpretation accuracy by comparing the 
interpreted results from images with field-
checked results. Activities were undertaken 
to enhance interpretation outcomes and 
mapping accuracy through sampling. 
Landsat satellite image data processing 
involved layer stacking, consolidating 
eleven different channels into a single 
dataset for easy analysis and comprehensive 
interpretation. Radiometric correction 
procedures were implemented to minimize 
errors resulting from the recording system 
and the passage of sunlight through objects 
to the recording camera. Radiometric 
accuracy denotes a system's capability to 
discern differences in electromagnetic 
energy, relying on the detector's signal-to-
noise ratio and its capacity to convert 
continuous electromagnetic signals into 
digital ones. Higher sensor bit values 
correspond to increased levels of 
radiometric accuracy. 

Radiometric correction employed in 
Landsat 8 images involves atmospheric 
reflectance correction, also known as Top of 
Atmosphere (ToA) correction. ToA 
correction serves the purpose of adjusting 
images by compensating for radiometric 
distortions arising from variations in the 
sun's position concerning Earth. This 
correction method accounts for the sun's 
differing positions during image acquisition 
times and across various locations. Its 
primary function involves transforming 
digital number values into reflectance 
values. The present study concentrates on 
evaluating Landsat-8 imagery's reflectance 
properties across diverse terrains, 
encompassing vegetation like forests and 
rice fields, open spaces such as barren land 
and settlements, and bodies of water. The 
application of ToA reflectance correction 
aims to convert digital values into 
reflectance values (Nugroho et al., 2017). 

Radiometric correction serves to 
eliminate radiometric distortions present in 
images, which result from errors in recorded 
pixel intensity values. These distortions can 
emerge from multiple factors encountered 

during data collection, transmission, and 
recording processes. Notably, key factors 
contributing to radiometric distortions in 
Landsat images include detector 
malfunctions and scattering effects. The final 
phase of image pre-processing involves 
image cropping and delineating an area of 
interest (AOI). This step focuses the analysis 
on specific geospatial phenomena, enabling 
a concentrated discussion on relevant study 
areas. 

The initial radiance (L) in each spectral 
channel of the satellite image is measured in 
digital numbers (DN) recorded by the 
sensor. The equation for measuring the 
initial radiance in channel i is (Jensen, 2015): 

 
L_i = DN_i * G_i + B_i ........ (1) 
 

Information: 
L_i : Initial radiance in channel i 
DN_i :  Digital number value in channel i 
G_i : Gain for channel i 
B_i : Offset for channel i 
 

This step involves radiometric 
correction to eliminate distortions caused by 
changes in sunlight and sensor 
characteristics. One commonly used method 
is the Top of Atmosphere (ToA) reflectance 
correction or atmospheric reflectance 
correction. The general equation to convert 
initial radiance to ToA reflectance values is 
(Jensen, 2015). 

 
R_i = (L_i - L_min) / (L_max - L_min) * 

(Q_cal_max - Q_cal_min) + Q_cal_min...(2) 
 
Information 
R_i : ToA reflectance value in channel i 
L_i : Initial radiance in channel i 
L_min : Minimum radiance in channel i 
L_max : Maximum radiance in channel i 
Q_cal_max : Maximum digital number  
          value that the sensor in the  
          channel can reach i 
Q_cal_min : Minimum digital number value  
          that the sensor in the channel  
          can reach i 
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After radiometric correction, the 
image may undergo geometric correction to 
remove spatial and geometric distortions, 
which involves mapping the image to 
geographic coordinates or an appropriate 
projection. Equations and steps for 
geometric correction will vary depending on 
the method used. 

The data gathered in this final stage is 
deemed suitable for analysis and serves as 
crucial material for comprehensive 
examination. The overall data compilation 
involves grouping and systematically 
analyzing data in a quantitative and 
deductive manner. Spatial analysis 
techniques were employed to discern spatial 

patterns within the collected datasets. The 
mapping process for each indicator was 
derived from the 2004 Puslittanak estimation 
model. Puslittanak, a research institution 
operating under the Indonesian Agency for 
Agricultural Research and Development, 
specializes in studying soil resilience and 
climatology in Indonesian agriculture. 
Utilizing this model, parameters are 
categorized based on their respective scores, 
which are then aggregated to ascertain 
geographical suitability. This process results 
in the assignment of five classes depicting 
landslide vulnerability levels: very low, low, 
moderate, high, and very high. 

 
 

 
Figure 2. Research Flow Diagram 

 
 

RESULTS AND DISCUSSION 
Built-Up Area Development Analysis 

An assessment was conducted to 
analyze the expansion and distribution of 
built-up areas in Ambon City from 2012 to 
2021. This analysis involved utilizing land 
cover data from 2012, derived from Landsat 
7 image classification, and land cover data 
from 2019 obtained from Landsat 8 image 
classification. The accuracy level of the 

Landsat 7 classification in 2012 was 
determined to be 92.51%, while the accuracy 
of the Landsat 8 classification in 2021 was 
found to be 91.08%. These accuracy levels 
fall within the coefficient range of 81-100% 
for Cohen's Kappa coefficient, as interpreted 
by (Altman, 1991), indicating an extremely 
high level of agreement suitable for analysis 
purposes.
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Figure 3. Map of Ambon City built area in 2012 (a) and 2022 (b) 

(Source: Data Processing, 2023) 
 

Table 4. Area of Ambon City Built-in 2012 and 2021 
No Land Use Area (Ha 
1. The built-up area in 2012 4,527,424 
2. The built-up area in 2022 5,707,990 

Source: Data Processing (2023) 
 
2. Landslide Factor Analysis 
Rainfall Factor 

Rainfall plays a significant role in 
triggering landslides, particularly in regions 
like Indonesia characterized by a wet 
tropical climate where it stands as a primary 
determinant of the climate. It serves as an 

external factor outside the slope's body that 
can lead to landslides due to its intensity and 
subsequent flow in various locations 
(Handoko & Ikaputra, 2019) The assessment 
and calculation of rainfall intensity values 
are presented in Table 5.

 
Table 5. Rain Intensity Class Criteria 

No Class Rain Intensity (mm) Description Score 
1 I 0 -13.6 Very low 1 
2 II 13.6 - 20.7 Low 2 
3 III 20.7 - 27.7 Moderate 3 
4 IV 27.7 - 34.8 High 4 
5 V >34.8 Very high 5 

Source: Ambon Pattimura Meteorological Station, 2022 
 

The study area's rainfall data is sourced from the Ambon Pattimura Meteorological 
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Station, revealing consistently high average 
annual rainfall over the past decade (2013-
2022), averaging around 27,862 mm. This 
consistent high-intensity rainfall signifies the 
area's frequent exposure to substantial rainfall 
throughout the year. Table 2 outlines the 
criteria defining the classes of rainfall intensity, 
with the recorded range in Ambon City falling 
between 27.7 to 34.8 mm, indicating a 
classification of high rainfall intensity (class 3). 
Figure 2 illustrates the spatial distribution of 
rainfall across the study area. 

Rainfall, a universal natural 
occurrence essential to various aspects of 
life, holds significant influence in Indonesia, 
especially in regions like Ambon City 
characterized by a tropical wet climate and 
frequent heavy rainfall. Intense rainfall often 
leads to increased surface water flow, 
resulting in substantial soil erosion and the 
potential displacement of soil material, 
subsequently compromising slope stability. 
According to (Arsyad et al., 2018), the 
precipitation amount on a slope tends to rise 
with altitude, rendering slopes devoid of 
vegetation or impermeable layers highly 

susceptible to landslides during heavy rains 
(Rienzi et al. 2013). The magnitude of rainfall 
directly impacts factors such as soil 
distribution strength, its carrying capacity, 
and vulnerability to damage (Hutapea, 
2020). Studies by (Andriawan and Sarya, 
2014) indicated that rainfall intensities 
exceeding 50 mm/h often trigger shallow 
landslides, while research by (Hidayat and 
Zahro, 2018) identified rainfall data as a 
catalyst for landslides in the Banjarnegara 
Region, particularly emphasizing that daily 
maximum rainfall of 56 mm could induce 
landslides. Furthermore, (Gemilang et al., 
2017) noted that areas like the Bungus Hills, 
experiencing an average rainfall of over 200 
mm, exhibit a notably high level of landslide 
hazard. 

 
Slope Factor 

Slope inclination is a critical factor 
contributing to landslides. It represents the 
ground surface's stability against gravitational 
forces (Fransiska et al., 2017). The 
determination and categorization of slope 
values are detailed in Table 6. 

Table 6. Class and Slope Area 

No Class Criteria  % Score Slope Description Slope (%) Area (Ha) 
1. I Flat to sloping 0 – 8 5.087.65 15,80 1 
2. II Slightly tilted 8 - 15 6,974.29 21.66 2 
3. III Crooked 15 - 30 9,380,68 29.14 3 
4. IV Very tilted > 30 10,750,05 33.39 4 

Total area 32,068,753 100.00  
Source: Data Processing (2023) 

 Table 6 illustrates that Ambon City 
exhibits diverse slopes, with the majority of the 
area comprising slopes very tilted than 30% 
and ranging between 15-30%, encompassing 
approximately 10,750.05 hectares. The terrain 
conditions in Ambon City, primarily 
consisting of slopes categorized as values 3 and 
4 or with high percentage slopes (as depicted 
in Figure 2), pose a significant risk for potential 
landslides. 

Slope inclination stands as a pivotal 
element influencing the occurrence of 
landslides, observed consistently across 
diverse global regions, including Indonesia, 
where the instability of steep or excessively 
steep slopes often leads to landslides 

(Fransiska et al., 2017). (Rompon and 
Almulqu, 2018) underscored the tendency 
for landslides to manifest more frequently in 
areas with elevated slope gradients. The 
slope factor contributes to diminishing the 
soil's shear strength, rendering it susceptible 
to collapse, as highlighted by (Akbar et al., 
2022). Moreover, the inclination of the slope 
directly impacts the magnitude of 
landslides, evidenced by (Çellek, 2020) 
demonstrating an escalation in soil mass 
movement corresponding to an increase in 
slope, attributable to heightened 
gravitational thrust and shear stresses. 
(Nengsih, 2015) reinforced this notion, 
indicating that slope stability hinges upon 
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the interplay between soil shear strength and 
shear stress, where soil collapse ensues 
when shear stress surpasses the soil's 
inherent strength. 

Land Use Factor 
The factor of land use encompasses the 

various human activities and natural elements 
covering the soil surface, such as vegetation 
and rock structures. As indicated by (Nugroho 

et al., 2017), different types of land use 
significantly influence the stability of slopes. 
Land use constitutes an external trigger that 
impacts the slope. Ambon City spans an area 
of 32,068,753 hectares, encompassing five 
primary land use types: forests, mixed 
gardens, shrublands, built-up areas, and 
plantations. Table 7 presents the classification 
of land use values in the area. 

Table 7. Land Use Class and Area 
No Class Land Use Area (Ha) % Score 
1. I Forest 7,875,105 24.46 1 
2. II Plantation 6,132,103 19.05 2 
3. III A built area 5,707,990 18.40 3 
4. IV Mixed garden 10,832,291 33.65 4 
5. V Shrubs 1,428,821 4.44 5 

Total area 32,068,753 100.00  
Source: Data Processing (2023) 
 
 Table 4 reveals that mixed garden land 
use, covering a total area of 10,832,291 hectares 
and classified with a value of 4, dominates the 
landscape of Ambon City. Built-up areas, 
spanning 5,923,844 hectares and classified with 
a value of 3, exhibit an evenly distributed 
presence throughout the city. Shrublands 
represent the smallest land use area, 
accounting for 1,428,821 hectares and classified 
with a value of 4, while plantations encompass 
the largest area, totaling 132,103 hectares and 
classified with a value of 2. The spatial 
distribution of land use signifies that mixed 
gardens, employing dryland farming 
techniques, predominantly occupy Ambon 
City. Shrublands, having the highest score 
among various land cover types in Ambon 
City (as depicted in Figure 2), significantly 
influence landslide occurrence frequencies. 

Alterations in land use transitioning 
from natural conditions to agricultural, 
residential, or industrial purposes can bring 
about changes in soil and vegetation 
characteristics, leading to the uprooting of 
soil-bound roots, amplified erosion, and 
compromised slope stability. Poor land-use 
decisions, not in harmony with 
environmental requisites, can heighten the 

likelihood of landslides (Nugroho et al. 
2017). According to Ritung et al (2007), 
regions characterized by steep slopes and 
specific land-use patterns, like moors and 
scrubs, often witness landslide occurrences. 
The potential degradation of slope stability 
contributes to increased landslides as land-
use intensity escalates (Hasibuan and 
Rahayu 2017; Soewandita (2018). Mixed 
gardens are identified as high-risk areas for 
landslides, necessitating improved land 
management practices aligned with land 
conservation regulations. Suwarsito et al 
(2020) propose the strategic placement of 
perennial plants possessing deep root 
systems in sloping areas to mitigate the 
incidence of landslides. 

Soil Type Factor 
The soil type factor plays a crucial role 

in the occurrence of landslides. In Ambon City, 
the soil types are categorized into four units: 1) 
alluvial, cambisol, regosol, gleysol, 2) cambisol, 
latosol, regosol, 3) latosol, cambisol, and 4) 
rensina, cambisol, litosol. Table 8 presents the 
classification and values assigned to these soil 
types.
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Table 8. Class and Area of Soil Types 

No Class Soil Types Area (Ha) % Score 
1 I Alluvial, Cambisol, Regosol, Gleysol 3,300,144 10.25 1 
2 III Cambisol, Latosol, Regosol 23,599,715 73.31 2 
3 II Latosol, Cambisol 1,969,064 6.12 3 
4 IV Rendzina, Cambisol, Litosol 3,323.746 10.32 4 

Total area 32,068,753 100.00  
Source: Faculty of Agriculture Unpatti (1985; Lasaiba, 2012) 
 

Table 8 illustrates that the soil types 
prevalent in Ambon City predominantly 
comprise cambisol, latosol, and regosol soil 
units, collectively occupying an area of 
23,599,715 hectares. However, the latosol and 
cambisol soil units only represent a small 
proportion, accounting for 6.12% of the total 
area or 1,699,064 hectares. Latosol soil type, in 
particular, while covering a relatively small 
land area, exhibits a widespread presence 
throughout Ambon City. The spatial 
distribution of this soil type is depicted in 
Figure 2. 

Landslides tend to happen in specific 
soil types, especially following rainfall. The 
occurrence of landslides is notably 
influenced by the fine and smooth texture of 
the soil, particularly clay-based textures. As 
highlighted by (Harjadi & Paimin, 2013). soil 
textures classified as finer are more 
susceptible to shrinkage, instability, or 
movement. (Heradian and Arman, 2015), 

point out that clayey soils with high water 
content represent areas prone to landslides 
due to their lower resistivity values. 
(Soewandita, 2018) notes that thick soil 
layers with a porous structure, particularly 
found in sloped areas, exhibit high 
vulnerability to landslides. (Hadiyanto, 
2011) highlighted the high sensitivity of 
cytosol and regosol soil types to water. 
Conversely, soil types such as alluvial, 
gleysol, planosol, laterite, and 
hydromorphone are less sensitive to water, 
resulting in a lower occurrence of landslides 
during the rainy season. 
Rock Type Factor 

Rock types in Ambon City encompass 
various categories such as sandstone, 
serpentine, diabase, gabbro groups, andesite 
groups, breccias, loose materials, granite units, 
limestone units, and alluvial deposits. Table 9 
presents the classification and values assigned 
to these rock types in the area. 

 
Table 9. Broad Class of Rock Types 

No  Rock Type Area (Ha) % Score 
1. I Alluvial deposit 4,402.08 13.67 1 
2. I Sandstone 1,298.61 4.03 1 
3. II Serpentine group, diabase, and gabbro 2,293.32 7.12 2 
4. III Granite unit 2,099.98 6.52 3 
5. III Limestone unit 1,924.40 5.98 3 
6. IV Andesite group, dacite, breccia 5,684.05 17.66 4 
7. V Loose materials 14,490,24 45.01 5 

Total area 32,068,753 100  
Source: Mining and Energy Office of Ambon City, 2022 
 
 The rock types in Ambon City exhibit 
diverse distributions, with loose material 
covering the most extensive area, spanning 
10,960 hectares or 45.05% of the area. 
Additionally, the Andesite, Dacite, and Breccia 
groups collectively cover an area of 5,684.05 

hectares. Conversely, sandstone represents the 
smallest area, covering only 1524.21 hectares or 
4.73% of the total area. The prevalent 
distribution of loose material and the Andesite, 
Dacite, and Breccia groups signifies their 
significance as the most extensive rock types in 
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Ambon City, attributed to the Ambon volcanic 
deposits during the Pliocene era. 

Ambon City exhibits geological 
structures primarily characterized by down 
(normal) faults and joint faults. The fault 
structures, evolving from northeast to 
southwest directions, intersect granite rock 
units, and clusters of serpentine, diabase, 
and gabbro units situated in the headlands 
of Seri Village and Hukurila Village. These 
findings align with Rahman (2010) 
suggesting that locations prone to landslides 
are associated with rock domes exposed to 
flow, and soil structures consisting of older 
Andesite and Andesite Breccia formations 
affected by numerous faults. Such rocks are 
prone to weathering into soil, rendering 
them susceptible to landslides when present 
on landslide-prone slopes (Putra et al. 2019). 
Volcanic sedimentary rocks and 
sedimentary rocks with sand-sized grains, 

along with compositions of gravel, sand, and 
clay, exhibit weaknesses. When subjected to 
weathering processes, these rocks swiftly 
transform into soil, posing vulnerability to 
landslides, particularly when situated on 
steep slopes (Darmawan et al. 2021). 

3. Landslide Vulnerability Analysis 
Regarding landslide vulnerability 

analysis, the determination of landslide hazard 
zoning in Ambon City was conducted by 
categorizing it into five risk classes: shallow, 
low, medium, high, and very high. This zoning 
was established based on the landslide hazard 
analysis design. By summing up (scoring) the 
factors present in each field unit, the level of 
vulnerability or likelihood of landslides can be 
calculated. Table 7 below illustrates five 
interval classes composed of the variables and 
their respective weights used in the analysis. 

 
Table 7. Scoring and Area of Landslide Vulnerability 

No Vulnerability Class Score Area (ha) Large (%) 
1. Very low 7 - 9 2.641.019 8.21 
2. Low 10 - 12 2,591,553 8.05 
3. Moderate 13 - 15 8,992,736 27.94 
4. Hight 16 - 18 16,619.011 51.63 
5. Very high 10 - 21 1,341,312 4.17 

Total area 32,185,631 100.00 
Source: Data Processing (2023) 
 
 Table 7 delineates that a mere 2,641,019 
hectares or 8.21% of Ambon City's total area is 
categorized as having a very low vulnerability 
to landslides, representing a minimal risk level 
(8%). Conversely, a significant high, totaling 
16,619.011 hectares or 51.63% of the area, falls 
into the high vulnerability zone for landslides. 
Moreover, the middle range of the landslide 
vulnerability map demonstrates a 
vulnerability level ranging from medium to 
high, predominantly observed in the hilly and 
mountainous regions of Ambon City, 
especially in areas characterized by steep 
slopes. The spatial distribution of landslide 
vulnerability can be observed in Figure 3. 

Moreover, the central zone depicted on 
the landslide vulnerability map tended to 
exhibit a vulnerability level ranging from 

moderate to high, particularly prevalent in 
the hilly and mountainous terrains of 
Ambon City, followed by regions 
characterized by steep slopes. This study 
draws parallels from research findings 
conducted in the Ponorogo Regency by 
(Yuniarta et al., 2015 & Naryanto et al., 2019), 
an area recognized for its predisposition to 
landslide occurrences owing to its 
predominant hill-based morphological 
features. A similar investigation conducted 
by (Fitrianingrum & Ruslanjari, 2012) in the 
Kulonprogo Regency, specifically the 
Menoreh Hills area, also highlighted 
geomorphological vulnerability to 
landslides, primarily attributed to high-
intensity and rapid rainfall.
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Figure 4. Rainfall Intensity Map, b) Slope Map, c) Land Use Map, d) Soil Type Maps, and e) 

Map of Rock Types 
 

Figure 4 depicts the precise locations of 
landslides within the study area, causing 
substantial damage to several residential 
buildings. The Regional Disaster Management 
Agency (BPBD) in Ambon City reported that a 
total of 17 landslides resulted in damage to 
approximately 56 houses. These landslides 
occurred across four sub-districts: Teluk 
Ambon, Nusaniwe, Sirimau, and Baguala. In 

Nusaniwe District, landslides were observed 
in three locations: Kudamati, Benteng, and 
Amahusu. Sirimau District experienced 
landslides in Batu Gajah, Amantelu, Batu Meja, 
Waihoka, and Soya areas. In Teluk Ambon 
District, landslides took place in the Tawiri, 
Poka, and Tihu areas. The Baguala sub-districts 
affected by landslides include Negeri Lama, 
Lateri, Halong, and Passo. 

 
 

https://doi.org/10.24114/jg.v16i1.41978


Jurnal Geografi - Vol 16, No 1 (2024) – (32-50) 
https://jurnal.unimed.ac.id/2012/index.php/geo/article/view/41978 

 

 Assessment of Landslide Vulnerability | 45  

 
Figure 5. Map of Landslide Locations in Ambon City 

 
Analysis of Built-up Land in Landslide 
Disaster Area 

The study utilized the development 
data of built-up areas and conducted an 
analysis of landslide vulnerability in Ambon 
City. This information served as input for the 
analysis aiming to identify built-up areas 
situated within regions prone to landslides. 

The distribution of built-up areas within each 
class of landslide vulnerability was determined 
through an overlay process, specifically by 
overlaying the outcomes of the two analyses 
and conducting an intersect analysis. This 
method, known as Kawasan zoning, is detailed 
in the subsequent table.

 
Table 8. Area of Built-up Land in Landslide Disaster Area 

Zone Information Area (Ha) % 
Z - 1 Built-up land on very low landslide hazard class 2,000,913 35.09 
Z - 2 Built-up land on low landslide hazard class 678,094 11.89 
Z - 3 Built-up land on moderate landslide vulnerability 

class 777,107 13.63 

Z - 4 Built-up land on high landslide vulnerability class 2,224,549 39.01 
Z - 5 Built-up Land on Very High Landslide Vulnerability 

Class 21,691 0.38 

Total area 5,702,356 100.00 
Source: Data Processing (2023) 
 

The distribution and extent of built-up 
land within each class of landslide 
vulnerability in Ambon City are outlined in 
Figure 4 and detailed in Table 8. The largest 
areas among the zones are Z-1 and Z-4, 
covering 2,224,549 hectares (39.01%) and 
2,000,913 hectares (35.09%), respectively, 
signifying the most extensive zoning 
classifications. Zones Z-2 and Z-3 encompass 

678,094 hectares (11.89%) and 777,107 hectares 
(13.63%), respectively. On the other hand, Z-5 
represents the smallest area, covering only 
21,691 hectares (0.38%). 

Zones Z-4 and Z-5 exhibit a high to very 
high vulnerability to landslides due to steep 
slopes ranging from 25% to greater than 40%, 
coupled with rock types prone to weathering 
and the prevalence of built-up land, which 
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further amplifies slope instability. 
Additionally, these areas possess low soil 
retention capacity, rendering them highly 
susceptible to erosion. According to the 
Regulation of the Minister of Public Works No. 
22 of 2007, constructing settlements is only 
recommended on slopes ranging from 0 to 15% 
(flat to slightly steep), designating zones Z-1, Z-
2, and Z-3 as suitable and safe for built-up land 
use. 

Development in areas like Z-4 and Z-5 
with steep slopes requires specific criteria, 
including engineering measures like 
embankments to maintain slope stability. 
However, the extreme impacts of climate 
change could affect the resilience of these 
engineering interventions, possibly 

necessitating increased costs for handling such 
construction projects. 

Most built-up areas within zones Z-4 
and Z-5 have been established by communities 
highly susceptible to landslides, making 
relocation impractical. In the future, the 
government must proactively control the 
expansion of built-up land in these high-risk 
zones, focusing on policies and spatial 
planning. Development efforts should be 
directed towards areas with low to moderate 
landslide vulnerability, such as Z-1, Z-2, and Z-
3 in Ambon City. Moreover, public education 
about the consequences of development 
activities leading to landslides is crucial, 
especially in high and very high vulnerability 
areas. 

 

 
Figure 4. Map of Landslide Prone Areas of Land Zoning in Built-up Areas in Ambon City 

Source: Data Processing (2023) 
 
 

CONCLUSION 
The research area's land units are 

categorized based on three primary factors: 
the steepness of the terrain, land use, and 
specific geological features. Landslides in 
this region were triggered by heavy rainfall, 
averaging between 27.7 to 34.8 meters, 
extensive steep to very steep slopes 
(constituting 62.53% of the area), 
predominant land use of mixed gardens and 
built-up areas (occupying 52.05% of the total 
area), and soil types like cambisol, latosol, 
regosol, alongside loose material rocks, 

covering approximately 73.31% and 45.01%, 
respectively. 

The vulnerability of landslides in this 
area is notably high, encompassing 
approximately 51.63% of the total area. This 
high vulnerability is mainly concentrated in 
regions characterized by steep to very steep 
slopes in hilly terrains. An analysis of the 
built-up areas in regions susceptible to 
landslides, particularly zones Z-4 and Z-5, 
highlights slopes ranging from 25 to over 
40%. These areas possess rock types highly 
susceptible to weathering, alongside land 
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cover that exacerbates the slope's instability. 
Furthermore, their soil holding capacity is 
low, making them prone to erosion, 
intensifying the vulnerability to landslides. 
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