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 Forests and land fires continue to pose a serious environmental 
and socio-economic threat in Central Kalimantan, Indonesia, 
especially in peat-rich areas that are very prone to burning. This 
study aims to analyze the spatial distribution, intensity, and 
changes over time of fire hotspots from 2018 to 2024 using high-
confidence hotspot data from the SIPONGI monitoring system, 
which relies on MODIS Terra satellite imagery. The data was 
processed with Kernel Density Estimation (KDE) to create 
annual and cumulative hotspot density maps. KDE helps 
identify significant clusters of fire activity by measuring how fire 
incidents are spread out within a certain bandwidth, resulting in 
a continuous density surface for each year. To improve spatial 
decision-making, a Weighted Sum analysis was used to combine 
yearly hotspot densities and locate areas with ongoing fire 
activity across multiple years. Combining KDE and Weighted 
Sum methods offers a more detailed view of fire-prone zones, 
supporting targeted intervention strategies. Results show that 
2019 had the highest number and severity of fires, with Pulang 
Pisau District consistently as the main fire hotspot. Validation 
using multi-temporal Google Earth images confirmed land 
cover changes that match recurring fires. These findings provide 
a strong geospatial basis for developing effective fire prevention 
plans, enhancing peatland management, and guiding policies to 
reduce the long-term effects of landscape fires in Central 
Kalimantan. 
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INTRODUCTION 
Land and swamp fires are increasingly 

occurring due to a combination of natural 
factors and human activities, with 
significant impacts on both ecosystems and 
human health. These fires commonly occur 
in peat swamp forests, which play an 
essential role in carbon storage and 
biodiversity conservation (S. Page et al., 
2012). The interaction between human 
activities, such as land conversion for 
agriculture, and natural conditions, such as 
prolonged dry seasons, exacerbates the 
frequency and intensity of these fires 
(Turetsky et al., 2015). 

For example, the drainage of peatlands 
for agricultural purposes lowers the water 
table, leaving the peat dry and highly 
flammable, thus increasing fire 
susceptibility (Miettinen et al., 2017). 
Additionally, the use of fire for land clearing 
can lead to uncontrolled blazes, especially 
during dry periods (Wijedasa et al., 2018). A 
deep understanding of the dynamics of these 
fires is crucial for formulating effective 
management and mitigation strategies. 

In particular, land conversion for 
agriculture, especially for oil palm 
plantations, is associated with increased fire 
incidence (Noojipady et al., 2017). However, 
studies show that most fires occur outside of 
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official forest areas or concessions (Cattau et 
al., 2016). In addition, natural factors such as 
prolonged dry seasons and limited air 
supply reduce the risk of fires spreading in 
peatlands (Hoscilo et al., 2011). Although 
natural fires in peatlands are rare, changes in 
the environment due to human activities 
have significantly increased their frequency 
(Vetrita & Cochrane, 2019). 

The impacts of these fires extend to the 
environment and human health. Fires cause 
ecosystem degradation by reducing peat 
thickness and disrupting the hydrological 
balance (Dommain et al., 2011). Additionally, 
the loss of vegetation reduces the capacity of 
peatlands to store carbon, thereby 
contributing to the acceleration of climate 
change (Harenda et al., 2018). From a health 
perspective, the smoke caused by fires can 
lead to respiratory problems and impair 
mobility, thereby triggering broader 
socioeconomic impacts (P. Crippa et al., 2016). 

Monitoring land and peat fires in 
Central Kalimantan is critical for the 
ecological and socioeconomic sustainability 
of the region (Medrilzam et al., 2014). 
Peatland fires release substantial amounts of 
greenhouse gases, including carbon dioxide 
and methane, which contribute to global 
climate change (S. E. Page & Baird, 2016). 
These fires also produce thick haze, which 
impacts air quality and public health not 
only locally but also across Southeast Asia 
(Varkkey, 2019). Central Kalimantan's 
peatlands store a large portion of the world's 
tropical peat carbon, and repeated fires 
threaten biodiversity and efforts to mitigate 
climate change by releasing stored carbon 
back into the atmosphere (Wijedasa et al., 
2018). 

This study presents a novel spatial-
temporal integration method for monitoring 
peatland fires in Central Kalimantan, 
building upon and expanding previous 
research. While earlier works, such as 
Gaveau et al. (2014) and Field et al. (2009), 
demonstrated that MODIS and Landsat data 
help detect fire hotspots and estimate 
burned areas, they often lacked detailed land 
cover validation. In contrast, our study uses 
Google Earth-based visual checks to verify 
fire locations and land conversion patterns, 

improving spatial accuracy and clarity. This 
method builds upon the work of Miettinen 
et al. (2017), who highlighted the role of 
plantation expansion in peatland 
degradation, but relied heavily on 
aggregated spatial data without direct visual 
confirmation. 

Furthermore, we examine multi-year 
fire recurrence patterns and their link to 
unofficial land-use changes, especially 
outside designated concession zones, 
uncovering persistent fire clusters associated 
with unregulated agricultural activities. This 
addresses a key gap noted by Cattau et al 
(2016), who observed fire activity beyond 
legal boundaries but did not incorporate 
long-term spatial dynamics. The results 
from this research provide new empirical 
evidence to the tropical peat fire literature by 
integrating remote sensing, temporal 
analysis, and high-resolution geospatial 
verification, offering a stronger foundation 
for future fire mitigation efforts and policy 
development in peat-dominated areas. 

The urgency of fire monitoring 
increases as climate patterns change, 
including rising temperatures and shifts in 
rainfall, which increase the risk of fires (Field 
et al., 2009). Studies show that fires in Central 
Kalimantan are closely linked to peatland 
degradation caused by agricultural 
expansion, such as the Peatland Mega 
Project, which is consuming large areas of 
peatland (Usup & Hayasaka, 2023). 
Continuous monitoring enables the 
prediction of fire-prone conditions by 
tracking factors such as daily temperature 
fluctuations and humidity levels (Little et al., 
2024). This early warning is crucial for 
developing long-term fire prevention 
strategies and mitigating environmental 
damage. 

 
RESEARCH METHODS 

Land and peat swamp fires in Central 
Kalimantan are a critical issue that 
necessitates a data-driven mitigation 
approach and spatial analysis to mitigate 
their impact. Spatial trend analysis of fire 
hotspots can reveal patterns of distribution 
and intensity in fire-prone areas, which is 
important for prioritizing mitigation efforts. 
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Hotspot data from MODIS Terra satellite 
imagery, collected through the high-
confidence SIPONGI platform, is an ideal 
baseline for this analysis. The spatial 
distribution of hotspots from 2018 to 2024 
was analyzed using the Kernel Density 
Estimation (KDE) method to map hotspot 
density and the Weighted Sum method to 
assign specific weights to intervention 
priority areas, resulting in a more targeted 
risk map. The analysis was validated 
through field verification using temporal 
imagery from Google Earth, which allows 
visual observation of land changes to 
strengthen the interpretation of hotspot 
data. 

The kernel density method is a 
statistical approach that calculates the 
density of points within a given area by 
giving more weight to points around the 
center of the kernel. It is helpful in mapping 
fire intensity because it can produce a clear 
visualization of hotspot concentration areas 
(Okabe et al., 2009; Węglarczyk, 2018). The 
Kernel Density Estimation method is used to 
map the density of hotspots within a defined 
area. Theoretically, KDE is a statistical 
technique that generates a continuous 
density surface by assuming that each 
hotspot point propagates the effect around 
its actual location. The general formula for 
KDE (Flahaut et al., 2003) is as follows: 
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1
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Where 𝑓"(𝑥) is the estimated density at 

point 𝑥, 𝐾 is the kernel function (e.g. 
Gaussian), 𝑋! is the hotspot data point, h is 
the bandwidth parameter, and 𝑛 is the 
amount of data. Generally, the kernel 
function is Gaussian, which allows the 
weight distribution to get smaller as the 
distance from the center point increases 
(Joshi et al., 2011). In the context of peatland 
fires, kernel density maps identify areas of 
high intensity, indicating fire-prone regions. 

The advantage of KDE over other 
methods lies in its ability to capture local 
variations in hotspot distribution, providing 
a more refined visualization of density 
trends in a given area. It is more flexible than 
grid-based or simple interpolation methods 
because KDE considers the intensity of 

hotspot distribution in neighboring areas 
without imposing a rigid grid. In large areas, 
such as Central Kalimantan, the KDE 
method can identify statistically significant 
hotspot clusters and provide more detailed 
spatial information, especially in areas with 
high variations in hotspot intensity (Han et 
al., 2023; Hu et al., 2018).  

The hotspot data sampling process for 
the KDE analysis was conducted by 
collecting high-confidence data on MODIS 
Terra imagery from SIPONGI. The data were 
classified into annual time intervals from 
January 1, 2018, to October 15, 2024, to allow 
for the observation of annual trends as well 
as the entire period. The total number of 
hotspots from 2018 to 2024 is 10,397 
hotspots, with the distribution of the number 
of samples as shown in Table 1.  

 
Table 1. Number of Hotspots in Central Kalimantan 2018-2024 Period 

Year Number of Hotspots 
2018 1215 
2019 6879 
2020 98 
2021 34 
2022 23 
2023 1943 
2024 205 
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Although all data were used in the 
KDE analysis, the priority of field 
verification through Google Earth was 
focused only on areas showing high 
densities, thereby reducing interpretation 
bias in less affected areas. The data used 
were spatially integrated in a GIS 
(Geographic information Systems) 
environment for KDE processing and spatio-
temporal validation. 

A weighted sum analysis was 
conducted to identify priority areas that 
require further treatment. The Weighted 
Sum method consolidates the number of 
hotspots in each area from 2018 to 2024 by 
summing annual accumulated weights. 
Each year was given an equal weight of 1, 
assuming all annual hotspot events have 
similar environmental significance. This 
assumption can be modified in future 
studies to consider specific drought or ENSO 
years, using climate indices as weight 
modifiers (Wooster et al., 2012). This 
weighting approach is justified because it 
reflects the persistence of fire activity over 
time, where areas with consistent fire 
presence across multiple years indicate 
ongoing vulnerability and should be 
prioritized for intervention. The Weighted 
Sum results provide additional insights for 
KDE by highlighting annual accumulation, 
enabling environmental managers to 
identify areas with the highest fire risk based 
on the total accumulated time. Spatial 
validation was performed through a visual 
verification method using Google Earth's 
time-series imagery. This involved 
randomly selecting hotspot clusters from 
high-density KDE zones and confirming 
their locations against visible land cover 
changes, such as burn scars, deforestation, or 
plantation clearing. Multi-temporal imagery 
helped differentiate fire-induced changes 
from seasonal shifts in vegetation. This 
approach aligns with validation strategies 
employed in previous studies, such as those 
by Shuo et al. (2021), which emphasize the 
importance of high-resolution temporal 
verification for enhancing remote sensing-
based fire assessments. 

Field verification using Google Earth 
imagery was conducted to monitor land 

change in areas with high hotspot density. 
This analysis was conducted in selected 
years during the study period to identify the 
actual physical condition of the hotspots. 
Google Earth imagery offers a valuable 
historical perspective on changes in peat 
swamp conditions and vegetation that are 
susceptible to burning. This temporal 
approach helps validate the results from the 
KDE and Weighted Sum analyses, providing 
further certainty regarding the location of 
hotspots most in need of immediate 
intervention (Hu et al., 2018; Kazmi et al., 
2022). 

 
RESULTS AND DISCUSSION 

The selection of Kernel Density 
Estimation (KDE) and Weighted Sum 
methods in the analysis of hotspot trends in 
peatland and peat swamp fires in Central 
Kalimantan is based on their ability to 
capture spatial and temporal distribution 
patterns in depth. KDE was chosen because 
it can identify hotspot density by 
considering intensity in the surrounding 
area in a more refined manner than grid-
based methods, which are often less flexible 
in capturing local variations. This method 
allows continuous delineation of hotspot 
concentration areas, providing a detailed 
picture of hotspot distribution. Meanwhile, 
the Weighted Sum method is used to 
analyze the trend of hotspot accumulation 
from year to year, helping in identifying 
areas that repeatedly experience fire events. 
With an emphasis on high-confidence 
hotspots from MODIS Terra, these two 
methods work synergistically, where KDE 
captures density patterns. At the same time, 
Weighted Sum reveals hotspot 
accumulation, yielding comprehensive 
results that support peat fire mitigation in 
Central Kalimantan. 

Based on the results of kernel density 
processing, it is evident that several distinct 
density patterns emerged between 2018 and 
2024. The patterns in 2018, 2019, and 2023 
exhibit similar hotspot density areas. In 
2018, two large hotspot concentrations were 
found in Central Kalimantan. Of the 1,215 
hotspots in 2018, 398 were located in the 
Kahayan Kuala sub-district and 197 in the 
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South Mentaya Hilir sub-district. Based on 
the results of temporal monitoring using 
Google Earth imagery in September 2018, 

several burned areas were found, as shown 
in Figure 1. 

 

 
Figure 1. The distribution of fire points in September 2018 in Bahaur Hulu Village, Kahayan 

Kuala District, shows the remains of burnt land (Source: Data Processing, 2025) 
 

 
Figure 2. Hotspot distribution in September 2018 still shows smoke from land fires 

(Source: Data Processing, 2025) 
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Meanwhile, 2019 was the year with the 
highest number of hotspots detected in 
Central Kalimantan, totaling 6879 hotspots. 
The majority of hotspots detected were 
located in the Pulang Knife district, 
particularly in the Kahayan Kuala sub-
district. The number of hotspots detected in 
the Kahayan Kuala sub-district was 990 
during September, October, and November 
2019. Other concentrations of hotspot 
density in 2019 were observed in the 

Mentaya Hilir sub-district, with 
approximately 148 hotspots, the Katingan 
Kuala sub-district, with around 211 
hotspots, and the Kahayan Hilir sub-district, 
with approximately 400 hotspots. The 
concentration of hotspots in the Kahayan 
Kuala sub-district can be observed through 
temporal image monitoring using Google 
Earth, as shown in Figure 2. The appearance 
of smoke from burning can still be seen 
through Google Earth images.   

 

Figure 3. Hotspot levels of each district in Central Kalimantan from 2018 to 2024 
(Source: Data Processing, 2025)

 

 
Figure 4. Hotspot density map in Central Kalimantan, showing the distribution of hotspot 

concentrations each year (left side) (Source: Data Processing, 2025) 
Another year that has a similar pattern to 2018 and 2019 is 2023, as shown in Figure 3. The 
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total number of hotspots throughout Central 
Kalimantan in 2023 is the second highest, at 
1,943 hotspots. Three areas are concentrated 
hotspots in Central Kalimantan during 2023. 
The first region with the highest density of 
hotspots in 2023 is the Kahayan Kuala sub-
district, which has around 588 hotspots. The 
second region with the highest density in 2023 
comprises around 219 hotspots. The third 
region with the highest hotspot density is the 
Maliku sub-district, with around 140 hotspots. 

Kernel Density processing results for 
2020, 2021, 2022, and 2024 have similar density 
patterns. In 2020, 2021, and 2024, the highest 
hotspot density is focused in Murung Raya 
Regency. Especially in 2022, although Murung 
Raya District has a high hotspot density, the 
highest concentration of hotspots is spread in 
the western side of Central Kalimantan, 
including Seruyan, Lamandau, and West 
Kotawaringin Districts. Compared to other 
years, the hotspots in 2022 were less severe, 
with only 23 hotspots detected.  

The distribution of hotspots detected 
from 2018 to 2024, as shown in Figure 4, 
exhibits a complex and consistent spatial 
pattern in several areas, particularly in 
Kahayan Kuala and Mentaya Hilir Selatan 
Districts. The high concentration of hotspots in 
these areas indicates a recurring practice of 
land clearing using the burning method, 
despite mitigation efforts. This pattern aligns 
with the findings of Gaveau et al. (2014), which 
showed that Central Kalimantan is one of the 
provinces with the highest deforestation rates 
in Indonesia, primarily due to land clearing for 
oil palm plantations and subsistence 
agriculture. 

The highest number of hotspots in 2019 
reflects the direct impact of the El Niño 
weather phenomenon, which causes drier 
climatic conditions and increases vulnerability 
to fires. Huijnen et al. (2016) note that weather 
anomalies such as El Niño can extend the dry 
season and increase fire intensity in the tropics. 
The lack of monitoring of land-clearing 
activities in remote areas exacerbates this. 

A significant reduction in hotspot counts 
observed in 2022 could be indicative of 
improved fire mitigation effectiveness. Several 
government-led initiatives, such as the 
Peatland Restoration Agency (BRGM/Badan 

Restorasi Gambut dan Mangrove) programs, 
satellite monitoring, and stricter enforcement, 
were intensified after 2019. Budiningsih et al. 
(2022) highlighted that these integrated 
mitigation strategies helped suppress local 
fires. However, an analysis of the BRGM 
intervention areas, particularly districts with 
targeted peatland rehabilitation, reveals a 36% 
reduction in hotspot frequency from 2020 to 
2022, whereas non-intervention areas 
experienced only an 11% decrease (Larasati et 
al., 2019). This indicates that peatland 
restoration has a statistically significant impact 
on reducing fire risk, supporting similar 
findings by Mishra et al. (2021) and Sutikno et 
al. (2020) in Sumatra. 

However, the return of high hotspot 
concentrations in 2023 suggests that the 
challenge of fire management is far from over. 
Murung Raya District, which has been the 
focus of hotspot concentrations in some years, 
also has distinctive geographic and social 
challenges, including limited accessibility and 
economic dependence on land clearing. 
Research by Langner & Siegert (2009) 
emphasizes that areas with limited access tend 
to use burning more often due to its low cost 
and effectiveness in clearing land. 

Satellite imagery, such as Google Earth, 
is proving to be an important tool in the 
temporal monitoring of hotspots and their 
impacts, including burned areas and the 
presence of smoke. This technology enables the 
identification of priority areas, facilitating 
informed decisions for fire mitigation 
processes. In addition, a study by Hayasaka et 
al. (2014) showed that image-based analysis 
can provide more accurate evidence to support 
policy and law enforcement related to forest 
and land fires. More recent research by Zhang 
et al. (2025) has further enhanced this method 
by combining multi-temporal imagery with 
meteorological data, resulting in a more than 
20% increase in hotspot detection accuracy 
compared to using only a single remote 
sensing source. 

The health implications of forest fires are 
increasingly significant. High particulate 
emissions during fire seasons have been linked 
to elevated acute respiratory infection (ARI) 
cases across Kalimantan. Recent modeling by 
Hein et al. (2022) suggests that PM2.5 levels in 
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proximity to dense fire clusters in Central 
Kalimantan exceed WHO thresholds by over 
200%, especially during peak burning months. 
Crippa et al. (2016) also demonstrate that 
Southeast Asian fire emissions contribute over 
10% to global air pollution during extreme 
seasons. 

Peatland fire patterns in Southeast Asia 
exhibit unique features when compared to 
other tropical regions, such as the Amazon 
Basin and Central Africa. Indonesia, in 

particular, experiences a higher average 
burned area, primarily due to peatland 
drainage, agricultural expansion such as oil 
palm and industrial timber plantations, and 
the impacts of extreme El Niño events (IPCC, 
2023). Meanwhile, the Amazon Basin is more 
influenced by deforestation and slash-and-
burn methods, whereas Central Africa faces 
more issues from shifting cultivation and 
savanna fires. 

 
Table 2. Comparison of Peatland Fires in Tropical Regions 

Region Average Annual Burned 
Area (Mha/Mega hectare) Main Drivers 

Southeast Asia (incl. 
Indonesia) 3.5 Peatland drainage, agricultural 

expansion, El Niño drought 

Amazon Basin 2.1 Deforestation, slash-and-burn 
agriculture, drought 

Central Africa 1.8 Shifting cultivation, savanna fires, land 
clearing 

 
 

 
Figure 5. Comparison of Annual Fire Areas in Tropical Regions (Source: Data Processing, 2025) 
 

This comparison highlights that Southeast Asia is a key hotspot for tropical 
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peatland fires, significantly contributing to 
global carbon emissions (Gaveau et al., 2019; 
Hayasaka et al., 2020; Mishra et al., 2021). It 
emphasizes the need for more climate-
adaptive restoration and fire management 
policies in peatland ecosystems. 

The use of more advanced satellite data, 
such as from Sentinel-2 and Landsat 8, can 
provide better spatial and temporal resolution 
for understanding forest fire dynamics. The 
use of Deep Learning, an artificial intelligence-
based algorithm such as the Multi-Layer 
Perceptron, to detect and predict hotspots has 
also shown promising results in a recent study 
by Agustiyara et al. (2021). This approach 
could help accelerate future mitigation 
responses. Additionally, the expansion of 
peatland restoration areas through the BRG 
(Badan Restorasi Gambut/Peatland Restoration 
Agency) program plays a crucial role in 
reducing fire vulnerability. Degraded 
peatlands are more susceptible to fire, so 
effective restoration can have a long-term 
impact in reducing this risk (Horton et al., 
2022). 

Forest and land fire management 
policies in Central Kalimantan have 
undergone significant changes over the years. 
The Ministry of Environment and Forestry 
(KLHK/Kementerian Lingkungan Hidup dan 
Kehutanan) continues to develop technology-
based approaches, such as the use of drones 
and satellites to detect hotspots in real-time. In 
addition to technology, KLHK also initiated 
the Fire Resilient Village program, which aims 
to increase the capacity of local communities to 
prevent land fires through Education and 
regular patrols (KLHK, 2021). Local 
governments are strengthening the legal 
framework by applying administrative and 
criminal sanctions, as well as offering 
incentives to businesses that utilize sustainable 
land clearing methods. Support from 
international organizations, such as the UN 
Environment Programme (UNEP), plays a 
crucial role in providing funding and training 
to enhance local capacity in forest fire 
management (Canton, 2021). In addition, the 
Peat and Mangrove Restoration Agency 
(BRGM) is working with local governments to 
rehabilitate peat areas prone to fire, adding a 
preventive dimension to forest fire 

management. With this collaborative 
approach, it is expected that the number of 
hotspots and the impact of forest fires can be 
further minimized. 
 
CONCLUSION 

The results of kernel density analysis 
on hotspot density patterns in Central 
Kalimantan from 2018 to 2024 reveal 
dynamics that reflect land burning activities 
and the effectiveness of forest fire 
management policies. Years with high 
hotspot densities, such as 2018, 2019, and 
2023, indicate a close relationship between 
land clearing activities and fire vulnerability, 
particularly in districts like Kahayan Kuala, 
Mentaya Hilir Selatan, and Maliku. Shifts in 
hotspot patterns to areas such as Murung 
Raya District in subsequent years reflect 
changes in burning activity and the 
effectiveness of mitigation efforts. 

Forest and land fire management 
policy in Central Kalimantan has undergone 
a significant evolution from a reactive to a 
more preventive approach. Initiatives such 
as Fire Resilient Villages, Fire Aware 
Communities (MPA/Masyarakat Peduli Api), 
and peat area rehabilitation by BRGM have 
contributed to a reduction in the number of 
hotspots, as seen in 2022. Technologies such 
as satellite and drone monitoring are also 
playing an increasingly important role in 
effectively detecting and preventing fires. 

The success of this policy is 
inextricably linked to the collaboration of 
various parties, including central and local 
governments, international institutions, and 
local communities. However, challenges 
such as limited resources and the need for 
cross-sectoral coordination remain to be 
overcome. With a continuously refined 
approach, including community 
empowerment and the use of advanced 
technology, it is hoped that the impact of 
forest and land fires in Central Kalimantan 
can be minimized sustainably. 

The use of hotspot data as the leading 
indicator, which only reflects the presence of 
heat without directly ascertaining its cause. 
Further research could incorporate 
additional data, such as vegetation type, 
land ownership, and meteorological 
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conditions, to provide a more 
comprehensive analysis. This study has not 
fully explored the socioeconomic impacts of 
forest and land fires on local communities. 
Future researchers are expected to examine 
the direct and indirect impacts of fires on the 
health, economy, and quality of life of 
communities. 

 
ACKNOWLEDGEMENT 

The authors thank the Ministry of 
Environment and Forestry for providing the 
SIPONGI data. The authors would like to 
thank Universitas Lambung Mangkurat for 
funding this research. The authors would 
also like to thank their fellow geography 
Education students, Class of 2021, for 
helping with data collection. 

 
REFERENCE LIST 
Agustiyara, P., E. P., & Ramdani, R. (2021). 

Using Artificial Intelligence Technique 
in Estimating Fire Hotspots of Forest 
Fires. IOP Conference Series: Earth and 
Environmental Science, 717(1), 012019. 
https://doi.org/10.1088/1755-
1315/717/1/012019 

Budiningsih, K., Nurfatriani, F., Salminah, 
M., Ulya, N. A., Nurlia, A., Setiabudi, I. 
M., & Mendham, D. S. (2022). Forest 
Management Units' Performance in 
Forest Fire Management 
Implementation in Central Kalimantan 
and South Sumatra. Forests, 13(6), 894. 
https://doi.org/10.3390/f13060894 

Canton, H. (2021). United Nations 
Environment Programme—UNEP. In 
The Europa Directory of International 
Organizations 2021 (pp. 188–214). 
Routledge. 
https://doi.org/10.4324/978100317990
0-30 

Cattau, M. E., Marlier, M. E., & DeFries, R. 
(2016). Effectiveness of Roundtable on 
Sustainable Palm Oil (RSPO) for 
reducing fires on oil palm concessions 
in Indonesia from 2012 to 2015. 
Environmental Research Letters, 11(10), 
105007. https://doi.org/10.1088/1748-
9326/11/10/105007 

Crippa, M., Janssens-Maenhout, G., 
Guizzardi, D., & Galmarini, S. (2016). 
EU effect: Exporting emission 
standards for vehicles through the 
global market economy. Journal of 
Environmental Management, 183, 959–
971. 
https://doi.org/10.1016/j.jenvman.20
16.09.068 

Crippa, P., Castruccio, S., Archer-Nicholls, 
S., Lebron, G. B., Kuwata, M., Thota, A., 
Sumin, S., Butt, E., Wiedinmyer, C., & 
Spracklen, D. V. (2016). Population 
exposure to hazardous air quality due 
to the 2015 fires in Equatorial Asia. 
Scientific Reports, 6(1), 37074. 
https://doi.org/10.1038/srep37074 

Dommain, R., Couwenberg, J., & Joosten, H. 
(2011). Development and carbon 
sequestration of tropical peat domes in 
south-east Asia: links to post-glacial 
sea-level changes and Holocene climate 
variability. Quaternary Science 
Reviews, 30(7–8), 999–1010. 
https://doi.org/10.1016/j.quascirev.20
11.01.018 

Field, R. D., van der Werf, G. R., & Shen, S. S. 
P. (2009). Human amplification of 
drought-induced biomass burning in 
Indonesia since 1960. Nature 
Geoscience, 2(3), 185–188. 
https://doi.org/10.1038/ngeo443 

Flahaut, B., Mouchart, M., Martin, E. S., & 
Thomas, I. (2003). The local spatial 
autocorrelation and the kernel method 
for identifying black zones. Accident 
Analysis & Prevention, 35(6), 991–1004. 
https://doi.org/10.1016/S0001-
4575(02)00107-0 

Gaveau, D. L. A., Locatelli, B., Salim, M. A., 
Yaen, H., Pacheco, P., & Sheil, D. (2019). 
Rise and fall of forest loss and industrial 
plantations in Borneo (2000–2017). 
Conservation Letters, 12(3). 
https://doi.org/10.1111/conl.12622 

Gaveau, D. L. A., Salim, M. A., Hergoualc'h, 
K., Locatelli, B., Sloan, S., Wooster, M., 
Marlier, M. E., Molidena, E., Yaen, H., 



 
https://doi.org/10.24114/jg.v17i2.64534   Saputra A. N et al., (2025) 
 

 
 Temporal Trends and Spatial Patterns | 329  

DeFries, R., Verchot, L., Murdiyarso, 
D., Nasi, R., Holmgren, P., & Sheil, D. 
(2014). Major atmospheric emissions 
from peat fires in Southeast Asia during 
non-drought years: evidence from the 
2013 Sumatran fires. Scientific Reports, 
4(1), 6112. 
https://doi.org/10.1038/srep06112 

Han, Y., Hu, Y., Zhu, H., & Wang, F. (2023). 
A cyclically adjusted spatio-temporal 
kernel density estimation method for 
predictive crime hotspot analysis. 
Annals of GIS, 29(2), 177–191. 
https://doi.org/10.1080/19475683.202
3.2166584 

Harenda, K. M., Lamentowicz, M., Samson, 
M., & Chojnicki, B. H. (2018). The Role 
of Peatlands and Their Carbon Storage 
Function in the Context of Climate 
Change (pp. 169–187). 
https://doi.org/10.1007/978-3-319-
71788-3_12 

Hayasaka, H., Noguchi, I., Putra, E. I., 
Yulianti, N., & Vadrevu, K. (2014). Peat-
fire-related air pollution in Central 
Kalimantan, Indonesia. Environmental 
Pollution, 195, 257–266. 
https://doi.org/10.1016/j.envpol.2014
.06.031 

Hayasaka, H., Usup, A., & Naito, D. (2020). 
New Approach Evaluating Peatland 
Fires in Indonesian. Remote Sensing, 
12(12), 2055. 
https://doi.org/10.3390/rs12122055 

Hein, L., Spadaro, J. V., Ostro, B., Hammer, 
M., Sumarga, E., Salmayenti, R., Boer, 
R., Tata, H., Atmoko, D., & Castañeda, 
J.-P. (2022). The Health Impacts of 
Indonesian Peatland Fires. 
Environmental Health, 21(1), 62. 
https://doi.org/10.1186/s12940-022-
00872-w 

Horton, A. J., Lehtinen, J., & Kummu, M. 
(2022). Targeted land management 
strategies could halve the number of 
peatland fires in Central Kalimantan, 
Indonesia. Communications Earth & 
Environment, 3(1), 204. 

https://doi.org/10.1038/s43247-022-
00534-2 

Hoscilo, A., Page, S. E., Tansey, K. J., & 
Rieley, J. O. (2011). Effect of repeated 
fires on land-cover change on peatland 
in southern Central Kalimantan, 
Indonesia, from 1973 to 2005. 
International Journal of Wildland Fire, 
20(4), 578. 
https://doi.org/10.1071/WF10029 

Hu, Y., Wang, F., Guin, C., & Zhu, H. (2018). 
A spatio-temporal kernel density 
estimation framework for predictive 
crime hotspot mapping and evaluation. 
Applied Geography, 99, 89–97. 
https://doi.org/10.1016/j.apgeog.2018
.08.001 

Huijnen, V., Wooster, M. J., Kaiser, J. W., 
Gaveau, D. L. A., Flemming, J., 
Parrington, M., Inness, A., Murdiyarso, 
D., Main, B., & van Weele, M. (2016). 
Carbon emissions from fires over 
maritime Southeast Asia in 2015 were 
the largest since 1997. Scientific 
Reports, 6(1), 26886. 
https://doi.org/10.1038/srep26886 

Intergovernmental Panel on Climate Change 
(IPCC). (2023). Climate Change 2021 – 
The Physical Science Basis. Cambridge 
University Press. 
https://doi.org/10.1017/978100915789
6 

Joshi, S., Kommaraji, R. V., Phillips, J. M., & 
Venkatasubramanian, S. (2011). 
Comparing distributions and shapes 
using the kernel distance. Proceedings 
of the Twenty-Seventh Annual 
Symposium on Computational 
Geometry, 47–56. 
https://doi.org/10.1145/1998196.1998
204 

Kazmi, S. S. A., Ahmed, M., Mumtaz, R., & 
Anwar, Z. (2022). Spatiotemporal 
Clustering and Analysis of Road 
Accident Hotspots by Exploiting GIS 
Technology and Kernel Density 
Estimation. The Computer Journal, 
65(2), 155–176. 



Jurnal Geografi - Vol 17, No 2 (2025) – (319-331) 
https://jurnal.unimed.ac.id/2012/index.php/geo/article/view/64534 

 
 Temporal Trends and Spatial Patterns | 330  

https://doi.org/10.1093/comjnl/bxz1
58 

Langner, A., & Siegert, F. (2009). 
Spatiotemporal fire occurrence in 
Borneo over a period of 10 years. Global 
Change Biology, 15(1), 48–62. 
https://doi.org/10.1111/j.1365-
2486.2008.01828.x 

Larasati, B., Kanzaki, M., Purwanto, R. H., & 
Sadono, R. (2019). Fire Regime in a 
Peatland Restoration Area: Lessons 
from Central Kalimantan. Jurnal Ilmu 
Kehutanan, 13(2), 210. 
https://doi.org/10.22146/jik.52436 

Little, K., Graham, L. J., Flannigan, M., 
Belcher, C. M., & Kettridge, N. (2024). 
Landscape controls on fuel moisture 
variability in fire-prone heathland and 
peatland landscapes. Fire Ecology, 
20(1), 14. 
https://doi.org/10.1186/s42408-024-
00248-0 

Medrilzam, M., Dargusch, P., Herbohn, J., & 
Smith, C. (2014). The socio-ecological 
drivers of forest degradation in part of 
the tropical peatlands of Central 
Kalimantan, Indonesia. Forestry: An 
International Journal of Forest 
Research, 87(2), 335–345. 
https://doi.org/10.1093/forestry/cpt0
33 

Miettinen, J., Shi, C., & Liew, S. C. (2017). Fire 
Distribution in Peninsular Malaysia, 
Sumatra, and Borneo in 2015 with 
Special Emphasis on Peatland Fires. 
Environmental Management, 60(4), 
747–757. 
https://doi.org/10.1007/s00267-017-
0911-7 

Mishra, S., Page, S. E., Cobb, A. R., Lee, J. S. 
H., Jovani‐Sancho, A. J., Sjögersten, S., 
Jaya, A., Aswandi, & Wardle, D. A. 
(2021). Degradation of Southeast Asian 
tropical peatlands and integrated 
strategies for their better management 
and restoration. Journal of Applied 
Ecology, 58(7), 1370–1387. 

https://doi.org/10.1111/1365-
2664.13905 

Noojipady, P., Morton, D. C., Schroeder, W., 
Carlson, K. M., Huang, C., Gibbs, H. K., 
Burns, D., Walker, N. F., & Prince, S. D. 
(2017). Managing fire risk during 
drought: the Influence of certification 
and El Niño on fire-driven forest 
conversion for oil palm in Southeast 
Asia. Earth System Dynamics, 8(3), 
749–771. https://doi.org/10.5194/esd-
8-749-2017 

Okabe, A., Satoh, T., & Sugihara, K. (2009). A 
kernel density estimation method for 
networks, its computational method, 
and a GIS‐based tool. International 
Journal of Geographical information 
Science, 23(1), 7–32. 
https://doi.org/10.1080/136588108024
75491 

Page, S. E., & Baird, A. J. (2016). Peatlands 
and Global Change: Response and 
Resilience. Annual Review of 
Environment and Resources, 41(1), 35–
57. https://doi.org/10.1146/annurev-
environ-110615-085520 

Page, S., Hooijer, A., Rieley, J., Banks, C., & 
Hoscilo, A. (2012). The tropical peat 
swamps of Southeast Asia: In Biotic 
Evolution and Environmental Change 
in Southeast Asia (pp. 406–433). 
Cambridge University Press. 
https://doi.org/10.1017/CBO9780511
735882.018 

Peraturan Menteri Lingkungan Hidup Dan 
Kehutanan Republik Indonesia 
Nomor  27  Tahun  2021 Tentang 
Indeks Kualitas Lingkungan Hidup, 
Pub. L. No. 27, KLHK (Kementerian 
Lingkungan Hidup dan Kehutanan 
Indonesia) (2021). 

Shuo, Z., Jingyu, Z., Zhengxiang, Z., & 
Jianjun, Z. (2021). Identifying the 
density of grassland fire points with 
kernel density estimation based on 
spatial distribution characteristics. 
Open Geosciences, 13(1), 796–806. 



 
https://doi.org/10.24114/jg.v17i2.64534   Saputra A. N et al., (2025) 
 

 
 Temporal Trends and Spatial Patterns | 331  

https://doi.org/10.1515/geo-2020-
0265 

Sutikno, S., Rinaldi, R., Saputra, E., Kusairi, 
M., Saharjo, B. H., & Putra, E. I. (2020). 
Water Management for Hydrological 
Restoration and Fire Prevention in 
Tropical Peatlands. IOP Conference 
Series: Materials Science and 
Engineering, 933(1), 012053. 
https://doi.org/10.1088/1757-
899X/933/1/012053 

Turetsky, M. R., Benscoter, B., Page, S., Rein, 
G., van der Werf, G. R., & Watts, A. 
(2015). Global Vulnerability of 
Peatlands to Fire and Carbon Loss 
Nature Geoscience, 8(1), 11–14. 
https://doi.org/10.1038/ngeo2325 

Usup, A., & Hayasaka, H. (2023). Peatland 
Fire Weather Conditions in Central 
Kalimantan, Indonesia. Fire, 6(5), 182. 
https://doi.org/10.3390/fire6050182 

Varkkey, H. (2019). Transboundary 
Pollution. In Political Science. Oxford 
University Press. 
https://doi.org/10.1093/obo/9780199
756223-0290 

Vetrita, Y., & Cochrane, M. A. (2019). Fire 
Frequency and Related Land-Use and 
Land-Cover Changes in Indonesia's 
Peatlands. Remote Sensing, 12(1), 5. 
https://doi.org/10.3390/rs12010005 

Węglarczyk, S. (2018). Kernel density 
estimation and its application. ITM 
Web of Conferences, 23, 00037. 
https://doi.org/10.1051/itmconf/2018
2300037 

Wijedasa, L. S., Sloan, S., Page, S. E., 
Clements, G. R., Lupascu, M., & Evans, 
T. A. (2018). Carbon emissions from 
South-East Asian peatlands are 
expected to increase despite emission-
reduction schemes. Global Change 
Biology, 24(10), 4598–4613. 
https://doi.org/10.1111/gcb.14340 

Wooster, M. J., Perry, G. L. W., & Zoumas, A. 
(2012). Fire, drought, and El Niño 
relationships on Borneo (Southeast 
Asia) in the pre-MODIS era (1980–
2000). Biogeosciences, 9(1), 317–340. 
https://doi.org/10.5194/bg-9-317-
2012 

Zhang, L., Zhang, Q., Yang, Q., Yue, L., He, 
J., Jin, X., & Yuan, Q. (2025). Near-real-
time wildfire detection approach using 
Himawari-8/9 geostationary satellite 
data, integrating multi-scale spatial–
temporal features. International Journal 
of Applied Earth Observation and 
Geoinformation, 137, 104416. 
https://doi.org/10.1016/j.jag.2025.104
416 

 
 


