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Forests and land fires continue to pose a serious environmental
and socio-economic threat in Central Kalimantan, Indonesia,
especially in peat-rich areas that are very prone to burning. This
study aims to analyze the spatial distribution, intensity, and
changes over time of fire hotspots from 2018 to 2024 using high-
confidence hotspot data from the SIPONGI monitoring system,
which relies on MODIS Terra satellite imagery. The data was
processed with Kernel Density Estimation (KDE) to create
annual and cumulative hotspot density maps. KDE helps
identify significant clusters of fire activity by measuring how fire
incidents are spread out within a certain bandwidth, resulting in
a continuous density surface for each year. To improve spatial
decision-making, a Weighted Sum analysis was used to combine
yearly hotspot densities and locate areas with ongoing fire
activity across multiple years. Combining KDE and Weighted
Sum methods offers a more detailed view of fire-prone zones,
supporting targeted intervention strategies. Results show that
2019 had the highest number and severity of fires, with Pulang
Pisau District consistently as the main fire hotspot. Validation
using multi-temporal Google Earth images confirmed land
cover changes that match recurring fires. These findings provide
a strong geospatial basis for developing effective fire prevention
plans, enhancing peatland management, and guiding policies to
reduce the long-term effects of landscape fires in Central
Kalimantan.

INTRODUCTION

Land and swamp fires are increasingly
occurring due to a combination of natural
activities,
significant impacts on both ecosystems and
human health. These fires commonly occur
in peat swamp forests, which play an
storage and
biodiversity conservation (S. Page et al,

interaction between human
such as land conversion for
agriculture, and natural conditions, such as
prolonged dry seasons, exacerbates the
frequency and intensity of these fires

factors and human

essential role in carbon

2012). The
activities,

(Turetsky et al., 2015).

For example, the drainage of peatlands
for agricultural purposes lowers the water
table, leaving the peat dry and highly
flammable, thus increasing tire
susceptibility  (Miettinen et al, 2017).
Additionally, the use of fire for land clearing
can lead to uncontrolled blazes, especially
during dry periods (Wijedasa et al.,, 2018). A
deep understanding of the dynamics of these
fires is crucial for formulating effective
management and mitigation strategies.

In particular, land conversion for
agriculture, especially for oil palm
plantations, is associated with increased fire
incidence (Noojipady et al.,, 2017). However,
studies show that most fires occur outside of

with
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official forest areas or concessions (Cattau et
al., 2016). In addition, natural factors such as
prolonged dry seasons and limited air
supply reduce the risk of fires spreading in
peatlands (Hoscilo et al, 2011). Although
natural fires in peatlands are rare, changes in
the environment due to human activities
have significantly increased their frequency
(Vetrita & Cochrane, 2019).

The impacts of these fires extend to the
environment and human health. Fires cause
ecosystem degradation by reducing peat
thickness and disrupting the hydrological
balance (Dommain et al., 2011). Additionally,
the loss of vegetation reduces the capacity of
peatlands to store carbon, thereby
contributing to the acceleration of climate
change (Harenda et al., 2018). From a health
perspective, the smoke caused by fires can
lead to respiratory problems and impair
mobility, thereby triggering broader
socioeconomic impacts (P. Crippaetal., 2016).

Monitoring land and peat fires in
Central Kalimantan is critical for the
ecological and socioeconomic sustainability
of the region (Medrilzam et al, 2014).
Peatland fires release substantial amounts of
greenhouse gases, including carbon dioxide
and methane, which contribute to global
climate change (S. E. Page & Baird, 2016).
These fires also produce thick haze, which
impacts air quality and public health not
only locally but also across Southeast Asia
(Varkkey, 2019). Central Kalimantan's
peatlands store a large portion of the world's
tropical peat carbon, and repeated fires
threaten biodiversity and efforts to mitigate
climate change by releasing stored carbon
back into the atmosphere (Wijedasa et al,
2018).

This study presents a novel spatial-
temporal integration method for monitoring
peatland fires in Central Kalimantan,
building upon and expanding previous
research. While earlier works, such as
Gaveau et al. (2014) and Field et al. (2009),
demonstrated that MODIS and Landsat data
help detect fire hotspots and estimate
burned areas, they often lacked detailed land
cover validation. In contrast, our study uses
Google Earth-based visual checks to verify
fire locations and land conversion patterns,

improving spatial accuracy and clarity. This
method builds upon the work of Miettinen
et al. (2017), who highlighted the role of
plantation  expansion in  peatland
degradation, but relied heavily on
aggregated spatial data without direct visual
confirmation.

Furthermore, we examine multi-year
fire recurrence patterns and their link to
unofficial land-use changes, especially
outside designated concession zones,
uncovering persistent fire clusters associated
with unregulated agricultural activities. This
addresses a key gap noted by Cattau et al
(2016), who observed fire activity beyond
legal boundaries but did not incorporate
long-term spatial dynamics. The results
from this research provide new empirical
evidence to the tropical peat fire literature by
integrating remote sensing, temporal
analysis, and high-resolution geospatial
verification, offering a stronger foundation
for future fire mitigation efforts and policy
development in peat-dominated areas.

The wurgency of fire monitoring
increases as climate patterns change,
including rising temperatures and shifts in
rainfall, which increase the risk of fires (Field
etal., 2009). Studies show that fires in Central
Kalimantan are closely linked to peatland
degradation caused by agricultural
expansion, such as the Peatland Mega
Project, which is consuming large areas of
peatland (Usup & Hayasaka, 2023).
Continuous  monitoring  enables the
prediction of fire-prone conditions by
tracking factors such as daily temperature
fluctuations and humidity levels (Little et al.,
2024). This early warning is crucial for
developing long-term fire prevention
strategies and mitigating environmental
damage.

RESEARCH METHODS

Land and peat swamp fires in Central
Kalimantan are a critical issue that
necessitates a data-driven mitigation
approach and spatial analysis to mitigate
their impact. Spatial trend analysis of fire
hotspots can reveal patterns of distribution
and intensity in fire-prone areas, which is
important for prioritizing mitigation efforts.
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Hotspot data from MODIS Terra satellite
imagery, collected through the high-
confidence SIPONGI platform, is an ideal
baseline for this analysis. The spatial
distribution of hotspots from 2018 to 2024
was analyzed using the Kernel Density
Estimation (KDE) method to map hotspot
density and the Weighted Sum method to
assign specific weights to intervention
priority areas, resulting in a more targeted
risk map. The analysis was validated
through field verification using temporal
imagery from Google Earth, which allows
visual observation of land changes to
strengthen the interpretation of hotspot
data.

f(x)=n—1hil<(

Where f(x) is the estimated density at
point x, K is the kernel function (e.g.
Gaussian), X; is the hotspot data point, h is
the bandwidth parameter, and n is the
amount of data. Generally, the Kkernel
function is Gaussian, which allows the
weight distribution to get smaller as the
distance from the center point increases
(Joshi et al., 2011). In the context of peatland
fires, kernel density maps identify areas of
high intensity, indicating fire-prone regions.

The advantage of KDE over other
methods lies in its ability to capture local
variations in hotspot distribution, providing
a more refined visualization of density
trends in a given area. It is more flexible than
grid-based or simple interpolation methods
because KDE considers the intensity of

Saputra A. N et al., (2025)

The kernel density method is a
statistical approach that calculates the
density of points within a given area by
giving more weight to points around the
center of the kernel. It is helpful in mapping
fire intensity because it can produce a clear
visualization of hotspot concentration areas
(Okabe et al., 2009; Weglarczyk, 2018). The
Kernel Density Estimation method is used to
map the density of hotspots within a defined
area. Theoretically, KDE is a statistical
technique that generates a continuous
density surface by assuming that each
hotspot point propagates the effect around
its actual location. The general formula for
KDE (Flahaut et al., 2003) is as follows:

x—Xl')

- M

hotspot distribution in neighboring areas
without imposing a rigid grid. In large areas,
such as Central Kalimantan, the KDE
method can identify statistically significant
hotspot clusters and provide more detailed
spatial information, especially in areas with
high variations in hotspot intensity (Han et
al., 2023; Hu et al., 2018).

The hotspot data sampling process for
the KDE analysis was conducted by
collecting high-confidence data on MODIS
Terra imagery from SIPONGI. The data were
classified into annual time intervals from
January 1, 2018, to October 15, 2024, to allow
for the observation of annual trends as well
as the entire period. The total number of
hotspots from 2018 to 2024 is 10,397
hotspots, with the distribution of the number
of samples as shown in Table 1.

Table 1. Number of Hotspots in Central Kalimantan 2018-2024 Period

Year Number of Hotspots
2018 1215

2019 6879

2020 98

2021 34

2022 23

2023 1943

2024 205
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Although all data were used in the
KDE analysis, the priority of field
verification through Google Earth was
focused only on areas showing high
densities, thereby reducing interpretation
bias in less affected areas. The data used
were spatially integrated in a GIS
(Geographic information Systems)
environment for KDE processing and spatio-
temporal validation.

A weighted sum analysis was
conducted to identify priority areas that
require further treatment. The Weighted
Sum method consolidates the number of
hotspots in each area from 2018 to 2024 by
summing annual accumulated weights.
Each year was given an equal weight of 1,
assuming all annual hotspot events have
similar environmental significance. This
assumption can be modified in future
studies to consider specific drought or ENSO
years, using climate indices as weight
modifiers (Wooster et al, 2012). This
weighting approach is justified because it
reflects the persistence of fire activity over
time, where areas with consistent fire
presence across multiple years indicate
ongoing vulnerability and should be
prioritized for intervention. The Weighted
Sum results provide additional insights for
KDE by highlighting annual accumulation,
enabling environmental —managers to
identify areas with the highest fire risk based
on the total accumulated time. Spatial
validation was performed through a visual
verification method using Google Earth's
time-series  imagery. This  involved
randomly selecting hotspot clusters from
high-density KDE zones and confirming
their locations against visible land cover
changes, such as burn scars, deforestation, or
plantation clearing. Multi-temporal imagery
helped differentiate fire-induced changes
from seasonal shifts in vegetation. This
approach aligns with validation strategies
employed in previous studies, such as those
by Shuo et al. (2021), which emphasize the
importance of high-resolution temporal
verification for enhancing remote sensing-
based fire assessments.

Field verification using Google Earth
imagery was conducted to monitor land

change in areas with high hotspot density.
This analysis was conducted in selected
years during the study period to identify the
actual physical condition of the hotspots.
Google Earth imagery offers a valuable
historical perspective on changes in peat
swamp conditions and vegetation that are
susceptible to burning. This temporal
approach helps validate the results from the
KDE and Weighted Sum analyses, providing
further certainty regarding the location of
hotspots most in need of immediate
intervention (Hu et al, 2018, Kazmi et al,
2022).

RESULTS AND DISCUSSION

The selection of Kernel Density
Estimation (KDE) and Weighted Sum
methods in the analysis of hotspot trends in
peatland and peat swamp fires in Central
Kalimantan is based on their ability to
capture spatial and temporal distribution
patterns in depth. KDE was chosen because
it can identify hotspot density by
considering intensity in the surrounding
area in a more refined manner than grid-
based methods, which are often less flexible
in capturing local variations. This method
allows continuous delineation of hotspot
concentration areas, providing a detailed
picture of hotspot distribution. Meanwhile,
the Weighted Sum method is used to
analyze the trend of hotspot accumulation
from year to year, helping in identifying
areas that repeatedly experience fire events.
With an emphasis on high-confidence
hotspots from MODIS Terra, these two
methods work synergistically, where KDE
captures density patterns. At the same time,
Weighted Sum reveals hotspot
accumulation, yielding comprehensive
results that support peat fire mitigation in
Central Kalimantan.

Based on the results of kernel density
processing, it is evident that several distinct
density patterns emerged between 2018 and
2024. The patterns in 2018, 2019, and 2023
exhibit similar hotspot density areas. In
2018, two large hotspot concentrations were
found in Central Kalimantan. Of the 1,215
hotspots in 2018, 398 were located in the
Kahayan Kuala sub-district and 197 in the
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South Mentaya Hilir sub-district. Based on  several burned areas were found, as shown
the results of temporal monitoring using  in Figure 1.
Google Earth imagery in September 2018,

0
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AltMode -1
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Tanggal : 24 Sep 2018 14:45 WIB
Sumber: NASA-MODIS
Latitude : -3.043
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Kecamatan : Kahayan Kuala
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Provinsi : Kalimantan Tengah
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Figure 1. The distribution of fire points in September 2018 in Bahaur Hulu Village, Kahayan
Kuala District, shows the remains of burnt land (Source: Data Processing, 2025)
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Figure 2. Hotspot distribution in September 2018 still shows smoke from land fires
(Source: Data Processing, 2025)
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Meanwhile, 2019 was the year with the
highest number of hotspots detected in
Central Kalimantan, totaling 6879 hotspots.
The majority of hotspots detected were
located in the Pulang Knife district,
particularly in the Kahayan Kuala sub-
district. The number of hotspots detected in
the Kahayan Kuala sub-district was 990
during September, October, and November
2019. Other concentrations of hotspot
density in 2019 were observed in the

Hotspot
[uny
o
(=}
(=}

Mentaya Hilir sub-district, with
approximately 148 hotspots, the Katingan
Kuala sub-district, with around 211
hotspots, and the Kahayan Hilir sub-district,
with approximately 400 hotspots. The
concentration of hotspots in the Kahayan
Kuala sub-district can be observed through
temporal image monitoring using Google
Earth, as shown in Figure 2. The appearance
of smoke from burning can still be seen
through Google Earth images.

e Hotspot 2018
Hotspot 2019
Hotspot 2020
Hotspot 2021

e Hotspot 2022

s Hotspot 2023

@ Hotspot 2024

Figure 3. Hotspot levels of each district in Central Kalimantan from 2018 to 2024
(Source: Data Processing, 2025)
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Figure 4. Hotspot density map in Central Kalimantan, showing the distribution of hotspot
concentrations each year (left side) (Source: Data Processing, 2025)

Another year that has a similar pattern to

2018 and 2019 is 2023, as shown in Figure 3. The
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total number of hotspots throughout Central
Kalimantan in 2023 is the second highest, at
1,943 hotspots. Three areas are concentrated
hotspots in Central Kalimantan during 2023.
The first region with the highest density of
hotspots in 2023 is the Kahayan Kuala sub-
district, which has around 588 hotspots. The
second region with the highest density in 2023
comprises around 219 hotspots. The third
region with the highest hotspot density is the
Maliku sub-district, with around 140 hotspots.

Kernel Density processing results for
2020, 2021, 2022, and 2024 have similar density
patterns. In 2020, 2021, and 2024, the highest
hotspot density is focused in Murung Raya
Regency. Especially in 2022, although Murung
Raya District has a high hotspot density, the
highest concentration of hotspots is spread in
the western side of Central Kalimantan,
including Seruyan, Lamandau, and West
Kotawaringin Districts. Compared to other
years, the hotspots in 2022 were less severe,
with only 23 hotspots detected.

The distribution of hotspots detected
from 2018 to 2024, as shown in Figure 4,
exhibits a complex and consistent spatial
pattern in several areas, particularly in
Kahayan Kuala and Mentaya Hilir Selatan
Districts. The high concentration of hotspots in
these areas indicates a recurring practice of
land clearing using the burning method,
despite mitigation efforts. This pattern aligns
with the findings of Gaveau et al. (2014), which
showed that Central Kalimantan is one of the
provinces with the highest deforestation rates
in Indonesia, primarily due to land clearing for
oil palm plantations and subsistence
agriculture.

The highest number of hotspots in 2019
reflects the direct impact of the El Nifio
weather phenomenon, which causes drier
climatic conditions and increases vulnerability
to fires. Huijnen et al. (2016) note that weather
anomalies such as El Nifio can extend the dry
season and increase fire intensity in the tropics.
The lack of monitoring of land-clearing
activities in remote areas exacerbates this.

A significant reduction in hotspot counts
observed in 2022 could be indicative of
improved fire mitigation effectiveness. Several
government-led initiatives, such as the
Peatland Restoration Agency (BRGM/Badan

Saputra A. N et al., (2025)

Restorasi Gambut dan Mangrove) programs,
satellite monitoring, and stricter enforcement,
were intensified after 2019. Budiningsih et al.
(2022)  highlighted that these integrated
mitigation strategies helped suppress local
fires. However, an analysis of the BRGM
intervention areas, particularly districts with
targeted peatland rehabilitation, reveals a 36%
reduction in hotspot frequency from 2020 to
2022, whereas non-intervention areas
experienced only an 11% decrease (Larasati et
al., 2019). This indicates that peatland
restoration has a statistically significant impact
on reducing fire risk, supporting similar
findings by Mishra et al. (2021) and Sutikno et
al. (2020) in Sumatra.

However, the return of high hotspot
concentrations in 2023 suggests that the
challenge of fire management is far from over.
Murung Raya District, which has been the
focus of hotspot concentrations in some years,
also has distinctive geographic and social
challenges, including limited accessibility and
economic dependence on land clearing.
Research by Langner & Siegert (2009)
emphasizes that areas with limited access tend
to use burning more often due to its low cost
and effectiveness in clearing land.

Satellite imagery, such as Google Earth,
is proving to be an important tool in the
temporal monitoring of hotspots and their
impacts, including burned areas and the
presence of smoke. This technology enables the
identification of priority areas, facilitating
informed decisions for fire mitigation
processes. In addition, a study by Hayasaka et
al. (2014) showed that image-based analysis
can provide more accurate evidence to support
policy and law enforcement related to forest
and land fires. More recent research by Zhang
et al. (2025) has further enhanced this method
by combining multi-temporal imagery with
meteorological data, resulting in a more than
20% increase in hotspot detection accuracy
compared to using only a single remote
sensing source.

The health implications of forest fires are
increasingly significant. High particulate
emissions during fire seasons have been linked
to elevated acute respiratory infection (ARI)
cases across Kalimantan. Recent modeling by
Hein et al. (2022) suggests that PM2.5 levels in
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proximity to dense fire clusters in Central
Kalimantan exceed WHO thresholds by over
200%, especially during peak burning months.
Crippa et al. (2016) also demonstrate that
Southeast Asian fire emissions contribute over
10% to global air pollution during extreme
seasons.

Peatland fire patterns in Southeast Asia
exhibit unique features when compared to
other tropical regions, such as the Amazon
Basin and Central Africa. Indonesia, in

particular, experiences a higher average
burned area, primarily due to peatland
drainage, agricultural expansion such as oil
palm and industrial timber plantations, and
the impacts of extreme El Nifio events (IPCC,
2023). Meanwhile, the Amazon Basin is more
influenced by deforestation and slash-and-
burn methods, whereas Central Africa faces
more issues from shifting cultivation and
savanna fires.

Table 2. Comparison of Peatland Fires in Tropical Regions

Reeion Average Annual Burned Main Drivers
8! Area (Mha/Mega hectare)
Southeast Asia (incl. 35 Peatland drainage, agricultural
Indonesia) ' expansion, El Nifio drought
. Deforestation, slash-and-burn
Amazon Basin 21 agriculture, drought
Central Africa 18 Shifting cultivation, savanna fires, land
clearing

_ 4
3
23.5
S 3
<L
225
=
> 2
(='a]
—
< 15
=
Z 1
]
0.5
=
Z 0

Southeast Asia Amazon Basin

(incl. Indonesia)

Central Africa

REGION

Figure 5. Comparison of Annual Fire Areas in Tropical Regions (Source: Data Processing, 2025)

This comparison highlights that

Southeast Asia is a key hotspot for tropical
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peatland fires, significantly contributing to
global carbon emissions (Gaveau et al.,, 2019;
Hayasaka et al., 2020; Mishra et al., 2021). It
emphasizes the need for more climate-
adaptive restoration and fire management
policies in peatland ecosystems.

The use of more advanced satellite data,
such as from Sentinel-2 and Landsat 8, can
provide better spatial and temporal resolution
for understanding forest fire dynamics. The
use of Deep Learning, an artificial intelligence-
based algorithm such as the Multi-Layer
Perceptron, to detect and predict hotspots has
also shown promising results in a recent study
by Agustiyara et al. (2021). This approach
could help accelerate future mitigation
responses. Additionally, the expansion of
peatland restoration areas through the BRG
(Badan Restorasi Gambut/Peatland Restoration
Agency) program plays a crucial role in
reducing fire vulnerability. Degraded
peatlands are more susceptible to fire, so
effective restoration can have a long-term
impact in reducing this risk (Horton et al,
2022).

Forest and land fire management
policies in Central Kalimantan have
undergone significant changes over the years.
The Ministry of Environment and Forestry
(KLHK/ Kementerian Lingkungan Hidup dan
Kehutanan) continues to develop technology-
based approaches, such as the use of drones
and satellites to detect hotspots in real-time. In
addition to technology, KLHK also initiated
the Fire Resilient Village program, which aims
to increase the capacity of local communities to
prevent land fires through Education and
regular patrols (KLHK, 2021). Local
governments are strengthening the legal
framework by applying administrative and
criminal sanctions, as well as offering
incentives to businesses that utilize sustainable
land clearing methods. Support from
international organizations, such as the UN
Environment Programme (UNEP), plays a
crucial role in providing funding and training
to enhance local capacity in forest fire
management (Canton, 2021). In addition, the
Peat and Mangrove Restoration Agency
(BRGM) is working with local governments to
rehabilitate peat areas prone to fire, adding a
preventive  dimension to forest fire

Saputra A. N et al., (2025)

management.  With  this  collaborative
approach, it is expected that the number of
hotspots and the impact of forest fires can be
further minimized.

CONCLUSION

The results of kernel density analysis
on hotspot density patterns in Central
Kalimantan from 2018 to 2024 reveal
dynamics that reflect land burning activities
and the effectiveness of forest fire
management policies. Years with high
hotspot densities, such as 2018, 2019, and
2023, indicate a close relationship between
land clearing activities and fire vulnerability,
particularly in districts like Kahayan Kuala,
Mentaya Hilir Selatan, and Maliku. Shifts in
hotspot patterns to areas such as Murung
Raya District in subsequent years reflect
changes in burning activity and the
effectiveness of mitigation efforts.

Forest and land fire management
policy in Central Kalimantan has undergone
a significant evolution from a reactive to a
more preventive approach. Initiatives such
as Fire Resilient Villages, Fire Aware
Communities (MPA /Masyarakat Peduli Api),
and peat area rehabilitation by BRGM have
contributed to a reduction in the number of
hotspots, as seen in 2022. Technologies such
as satellite and drone monitoring are also
playing an increasingly important role in
effectively detecting and preventing fires.

The success of this policy is
inextricably linked to the collaboration of
various parties, including central and local
governments, international institutions, and
local communities. However, challenges
such as limited resources and the need for
cross-sectoral coordination remain to be
overcome. With a continuously refined
approach, including community
empowerment and the use of advanced
technology, it is hoped that the impact of
forest and land fires in Central Kalimantan
can be minimized sustainably.

The use of hotspot data as the leading
indicator, which only reflects the presence of
heat without directly ascertaining its cause.
Further research  could incorporate
additional data, such as vegetation type,
land  ownership, and meteorological
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conditions, to  provide a  more
comprehensive analysis. This study has not
fully explored the socioeconomic impacts of
forest and land fires on local communities.
Future researchers are expected to examine
the direct and indirect impacts of fires on the
health, economy, and quality of life of
communities.
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