Detection of Participants Facial Expressions in Video Conference Using Convolutional Neural Network Algorithm
Abstract
Purpose: The purpose of this research is to develop an architecture based on the Convolutional Neural Network (CNN) algorithm to detect facial expressions during video conferences. The goal is to address the problem of understanding participants' emotions and expressions during online video conferencing sessions. The aim is to create a system that can analyze facial expressions in images and determine the corresponding emotions.
Methods/Study design/approach: Data was collected by capturing facial expression images from 10 students using a webcam. Preprocessing techniques, such as cropping, converting images to grayscale, and data augmentation, were applied to ensure data variation. The CNN model was trained using the processed data and evaluated using test data (a subset of the dataset), new data (external data) and video conference recording.
Result/Findings: The CNN model achieved a high training accuracy of 97.5% using an image size of 128x128 and 2000 epochs. The model architecture consists of 2 Conv2D layers, 3 BatchNormalization layers, 2 MaxPooling layers, 2 dropout layers, 1 flat layer, 1 dense layer, and 1 output layer. When tested on facial expression data, the model achieved with 97,5% accuracy on the training data and 93,33% accuracy on the test data. The model was also able to detect the facial expressions of participants in the video conference.
Novelty/Originality/Value: The novelty of this research lies in developing a CNN-based system to detect facial expressions in video conferences by analyzing facial images. This approach addresses the challenge of understanding participants' emotions and expressions during online video conferencing sessions, which can contribute to better communication and interaction among participants.Full Text:
PDFReferences
L. Lina, A. A. Marunduh, W. Wasino, and D. Ajienegoro, “Identifikasi emosi pengguna konferensi video Menggunakan Convolutional Neural Network,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 5, p. 1047, 2022. doi:10.25126/jtiik.2022955269.
N. Ekawardhana, “Efektivitas pembelajaran dengan menggunakan media video conference,” Seminar Nasional Ilmu Terapan, vol. 4, no. 1, 2020.
M. H. Dra. Rosnawati, “Pemulihan Karakter siswa pasca pembelajaran daring,” Gurusiana, https://www.gurusiana.id/read/drarosnawatimhum/article/pemulihan-4869238 (accessed Jul. 6, 2023).
N. Zuriah, Pendidikan Moral & Budi Pekerti Dalam Perspektif Perubahan: Menggagas Platform Pendidikan Budi Pekerti Secara Kontekstual Dan Futuristik. Jakarta: Bumi Aksara, 2007.
S. S. Kulkarni, “Facial image based mood recognition using committee neural networks”, thesis, 2006.
T. T. T. R. ZHENG, Artificial Intelligence with Python. S.l.: SPRINGER VERLAG, SINGAPOR, 2023.
N. G. Paterakis, E. Mocanu, M. Gibescu, B. Stappers and W. van Alst, "Deep learning versus traditional machine learning methods for aggregated energy demand prediction," 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Turin, Italy, 2017, pp. 1-6, doi: 10.1109/ISGTEurope.2017.8260289.
Yusuf, A. Wihandika, R. C. Dewi, and Candra, “Klasifikasi Emosi Berdasarkan Ciri Wajah Menggunakan Convolutional Neural Network,” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, vol. 3, no. 11, 2020.
M. B. Nendya, L. Husniah, H. Wibowo, and E. M. Yuniarno, “Sintesa Ekspresi Wajah Karakter Virtual 3D Menggunakan action unit berbasis facial action coding system (FACS),” Journal of Animation and Games Studies, vol. 7, no. 1, pp. 13–24, 2021. doi:10.24821/jags.v7i1.4239.
T. D. Bui, Creating Emotions and Facial Expressions for Embodied Agents. Enschede, University of Twente: Taaluitgeverij Neslia Paniculata, 2004.
A. T. Lopes, E. de Aguiar, A. F. De Souza, and T. Oliveira-Santos, “Facial expression recognition with convolutional neural networks: Coping with few data and the training sample order,” Pattern Recognition, vol. 61, pp. 610–628, 2017. doi:10.1016/j.patcog.2016.07.026.
K. Liu, M. Zhang, and Z. Pan, “Facial expression recognition with CNN ensemble,” 2016 International Conference on Cyberworlds (CW), 2016. doi:10.1109/cw.2016.34.
DOI: https://doi.org/10.24114/j-ids.v2i2.49060
Article Metrics
Abstract view : 183 timesPDF - 122 times
Refbacks
- There are currently no refbacks.
Journal of Informatics and Data Science (J-IDS)
ISSN (Online) : 2964-0415
Published By Computer Science Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan.
Website: https://jurnal.unimed.ac.id/2012/index.php/jids/index
Email : jids@unimed.ac.id
This work is licensed under a Creative Commons Attribution 4.0 International License.