Analysis of Prediction of Glove Production Quantity Using Sugeno's Fuzzy Logic (Case Study: PT Medisafe Technologies)

Martin Hans R Simaremare

Abstract


Purpose: These days there are often problems in the world sometimes have uncertain or vague answers. Therefore, fuzzy logic is one method for conducting such uncertain analysis. This thesis discusses the application of fuzzy logic Analysis of Prediction of Glove Production Quantities using the Sugeno method. The problem that is solved is to predict or predict the amount of production of goods  because some workers in the company predict production figures by filling or the minds of the workers themselves based on the previous year's production output data

Study method/design/approach: The first step for this study is to determine the input and output variables that are firm sets and then convert each variable into a fuzzy set consisting of Little, Medium, and Many by fuzzification process. It then processes the fuzzy set data through base rules defined by the minimum method to retrieve the smallest membership degree value previously calculated through the membership function representation. And the last one is the Sugeno Method Defuzzification, which is to find the value of the average weight centrally

Results/Findings: Based on prediction analysis calculations using Stock and production data from December 2018 to January 2023, the predicted amount obtained in the following year is higher than the actual production amount in the previous year. In January 2022, the actual production output obtained from PT. Medisafe Technologies amounted to 181,822,894 pcs, while the prediction results from calculations using the Sugeno fuzzy logic model amounted to 327,147,796 pcs. The error accuracy value using MAPE is 1.66%, which means that the accuracy of truth is 99.4%. So forecasting the amount of production using the Sugeno fuzzy logic model is very good for the company.

Novelty / Originality / Value: The novelty of this study lies in the development of a model using the fuzzy sugeno method to predict the amount of glove production. This approach discusses to forecast the number of glove production in a company per month interval based on data on the amount of production in the previous year  as an output  variable and raw material inventory data as an input variable.

Full Text:

PDF

References


A. Rizky Purwandito, Hardi Suyitno, “Penerapan Sistem Inferensi Fuzzy Metode Mamdani Untuk Penentuan Jumlah Produksi Eggroll,” Unnes J. Math., vol. 8, no. 1, pp. 1–10, 2019.

Y. Wibowo, Y. R. Maulida, and B. H. Purnomo, “Rencana Produksi Olahan Kopi Di Perusahaan Daerah Perkebunan (Pdp) Kahyangan Jember Menggunakan Metode Fuzzy Tsukamoto,” Agrointek, vol. 13, no. 1, p. 61, 2019, doi: 10.21107/agrointek.v13i1.4875.

K. Muflihunna and M. Mashuri, “Penerapan Metode Fuzzy Mamdani dan Metode Fuzzy Sugeno dalam Penentuan Jumlah Produksi,” Unnes J. Math., vol. 11, no. 1, pp. 27–37, 2022, doi: 10.15294/ujm.v11i1.50060.

N. Andriani, “Perancangan Aplikasi Menentukan Jumlah Produksi Roti Dengan Metode Fuzzy Tsukamoto Pada Pt. Chochointi Sejahtera,” Hexag. J. Tek. dan Sains, vol. 2, no. 1, pp. 57–62, 2021, doi: 10.36761/hexagon.v2i1.878.

J. Warmansyah and D. Hilpiah, “Penerapan metode fuzzy sugeno untuk prediksi persediaan bahan baku,” Teknois J. Ilm. Teknol. Inf. dan Sains, vol. 9, no. 2, pp. 12–20, 2019, doi: 10.36350/jbs.v9i2.58.

F. Solikin, “APLIKASI LOGIKA FUZZY DALAM OPTIMISASI PRODUKSI BARANG MENGGUNAKAN METODE MAMDANI DAN METODE SUGENO,” Universitas Negeri Yogyakarta, 2011.

M. Mahrus, T. Yulianto, and F. Faisol, “Perbandingan Metode Exponential Smoothing dan Moving Average Pada Peramalan Jumlah Produksi Garam di Madura,” Zeta - Math J., vol. 6, no. 1, pp. 17–23, 2021, doi: 10.31102/zeta.2021.6.1.17-23.

W. Basriati, S., Safitri, E., Rahmawati., & Wulandari, “Penerapan Metode Fuzzy Sugeno untuk Menentukan Jumlah Produksi Roti Optimum,” Semin. Nas. Teknol. Informasih, Komun. dan Ind., vol. 12, no. November, pp. 1–7, 2019.




DOI: https://doi.org/10.24114/j-ids.v2i2.50839

Article Metrics

Abstract view : 70 times
PDF - 35 times

Refbacks

  • There are currently no refbacks.


Journal of Informatics and Data Science (J-IDS)

ISSN (Online) : 2964-0415

Published By Computer Science Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan.

Website: https://jurnal.unimed.ac.id/2012/index.php/jids/index

Email : jids@unimed.ac.id

This work is licensed under a Creative Commons Attribution 4.0 International License.