Performance Comparison of VGG16, VGG19 and Alexnet Pre-Trained Transfer Learning Architecture Models in the Convolutional Neural Network Algorithm in Classification of Lung Disease
Abstract
This study aims to comprehend the performance of transfer learning architectures (VGG16, VGG19, and Alexnet) in a Convolutional Neural Network for classifying lung diseases. Another objective is to determine the most superior transfer learning approach in this classification scenario. The dataset consists of 5 classes: normal lungs, pneumonia, bronchopneumonia, tuberculosis, and bronchitis. The data was sourced from Sinar Husni Deli Serdang Hospital through the radiology laboratory. The dataset was divided 80:20 for training and testing, with hyperparameters including a batch size of 32, 50 epochs, and optimization using Adaptive Momentum Optimization with a learning rate of 0.001. The research findings reveal that the VGG19 transfer learning architecture achieves the best performance with an accuracy of 59.17%, precision of 62%, recall of 59.2%, and an f-1 score of 58.8%. VGG16 ranks second with an accuracy of 55.83%, precision of 58%, recall of 55.8%, and an f-1 score of 55.2%. Alexnet has an accuracy of 49.17%, precision of 53.2%, recall of 49.2%, and an f-1 score of 50.6%. In an external test with 50 data points, VGG16 attains an accuracy of 54%, VGG19 scores 42%, and Alexnet records 46%. These models perform better in classifying normal lungs and tuberculosis compared to pneumonia, bronchopneumonia, and bronchitis. Analysis of lung image data demonstrates that homogeneity of RGB pixel values within a class supports transfer learning performance in classification. Conversely, heterogeneity in RGB pixel values can diminish the evaluation of that class.
Full Text:
PDFReferences
S. Chen, Z. Sedghi, F. Dubost, G. Van Tulder, and M. De, “An end-to-end approach to segmentation in medical images with CNN and posterior-CRF,” Med. Image Anal., vol. 76, p. 102311, 2022, doi: 10.1016/j.media.2021.102311.
P. M. M. Pereira et al., “Melanoma classification using light-Fields with morlet scattering transform and CNN : Surface depth as a valuable tool to increase detection rate,” Med. Image Anal., vol. 75, p. 102254, 2022, doi: 10.1016/j.media.2021.102254.
B. D. Prasetyo, “LEMBAR PENGESAHAN KLASIFIKASI CITRA X-RAY PARU-PARU ANAK PNEUMONIA DAN NON-PNEUMONIA MENGGUNAKAN METODE SEGMENTASI DAN DETEKSI TEPI TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Teknik pada Program Studi Teknik Elektro Faku,” 2020.
I. Buana and D. A. Harahap, “Asbestos, Radon Dan Polusi Udara Sebagai Faktor Resiko Kanker Paru Pada Perempuan Bukan Perokok,” AVERROUS J. Kedokt. dan Kesehat. Malikussaleh, vol. 8, no. 1, p. 1, 2022, doi: 10.29103/averrous.v8i1.7088.
R. Moch Diar, R. Y. Fu’adah, and K. Usman, “Klasifikasi Penyakit Paru-Paru Berbasis Pengolahan Citra X Ray Menggunakan Convolutional Neural Network (Classification Of The Lung Diseases Based On X Ray Image Processing Using Convolutional Neural Network),” e-Proceeding Eng., vol. 9, no. 2, pp. 476–484, 2022.
L. A. Andika, H. Pratiwi, and S. S. Handajani, “Klasifikasi Penyakit Pneumonia Menggunakan Metode Convolutional Neural Network Dengan Optimasi Adaptive Momentum,” Indones. J. Stat. Its Appl., vol. 3, no. 3, pp. 331–340, 2019, doi: 10.29244/ijsa.v3i3.560.
N. P. Ekananda and D. Riminarsih, “Identifikasi Penyakit Pneumonia Berdasarkan Citra Chest X-Ray Menggunakan Convolutional Neural Network,” J. Ilm. Inform. Komput., vol. 27, no. 1, pp. 79–94, 2022, doi: 10.35760/ik.2022.v27i1.6487.
T. Y. Liu, H. Q. Zhang, H. X. Long, J. Shi, and Y. H. Yao, “Convolution neural network with batch normalization and inception-residual modules for Android malware classification,” Sci. Rep., vol. 12, no. 1, pp. 1–17, 2022, doi: 10.1038/s41598-022-18402-6.
B. Baba, U. Al, A. Mandar, U. Hasanuddin, I. S. Areni, and U. Hasanuddin, “Gabor Filter Evaluation for Binary Threshold Image Processing in Early Detection Application,” no. May 2020, 2018.
S. Bhahri and Rachmat, “Transformasi Citra Biner Menggunakan,” J. Sist. Inf. dan Teknol. Inf., vol. 7, no. 2, pp. 195–203, 2018.
F. D. Adhinata, N. Annisa, F. Tanjung, W. Widayat, and G. R. Pasfica, “Comparative Study of VGG16 and MobileNetV2 for Masked Face Recognition,” vol. 7, no. 2, pp. 230–237, 2021, doi: 10.26555/jiteki.v7i2.20758.
S. Sennan, D. Pandey, Y. Alotaibi, and S. Alghamdi, “A Novel Convolutional Neural Networks Based Spinach Classification and Recognition System,” Comput. Mater. Contin., vol. 73, no. 1, pp. 343–361, 2022, doi: 10.32604/cmc.2022.028334.
A. Julianto, A. Sunyoto, D. Ferry, and W. Wibowo, “Optimasi Hyperparameter Convolutional Neural Network Untuk Klasifikasi Penyakit Tanaman Padi (Optimization of Convolutional Neural Network Hyperparameters for Classification of Rice Plant Diseases)”, [Online]. Available: https://www.kaggle.com/tedisetiady/leaf-rice-dis-
R. Poojary, R. Raina, and A. K. Mondal, “Effect of data-augmentation on fine-tuned CNN model performance,” vol. 10, no. 1, pp. 84–92, 2021, doi: 10.11591/ijai.v10.i1.pp84-92.
H. M and S. M.N, “A Review on Evaluation Metrics for Data Classification Evaluations,” Int. J. Data Min. Knowl. Manag. Process, vol. 5, no. 2, pp. 01–11, 2015, doi: 10.5121/ijdkp.2015.5201.
DOI: https://doi.org/10.24114/j-ids.v3i1.51163
Article Metrics
Abstract view : 77 timesPDF - 46 times
Refbacks
- There are currently no refbacks.
Journal of Informatics and Data Science (J-IDS)
ISSN (Online) : 2964-0415
Published By Computer Science Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan.
Website: https://jurnal.unimed.ac.id/2012/index.php/jids/index
Email : jids@unimed.ac.id
This work is licensed under a Creative Commons Attribution 4.0 International License.