Classification of North Sumatra Batak Ulos Based on Ethnicity Using Convolutional Neural Network Algorithm Approach

Dedy Kiswanto

Abstract


Ulos is a piece of cloth produced through a weaving process that reflects a rich cultural heritage and has high value. The patterns contained in woven ulos often contain philosophical meanings, reflecting the traditional values, beliefs and history of the communities that produce them. However, in reality there are still many Batak young men and women and the general public who are not yet able to distinguish between types of ulos. This research aims to help identify types of uos with the hope of providing deeper insight into the diversity of ulos based on ethnicity in North Sumatra. The dataset used in this research consists of 600 datasets which are divided into 6 types of ulos. Before the classification process is carried out, the data is cleaned through data preprocessing by cropping the image data to produce the same image data size. The research results show a classification accuracy rate of 96%. This finding confirms that the Convolutional Neural Network (CNN) method can be applied to classify ulos based on ethnicity. This has important implications in increasing understanding and appreciation of the traditional arts of the Batak tribe and supporting efforts to preserve this valuable cultural heritage


Full Text:

Pdf

References


Siregar, Erik D. Perubahan Bunyi Proto Austronesia (PAN) Pada Bahasa Karo, Bahasa Batak, Bahasa Pakpak, Bahasa Simalungun, Bahasa Mandailing dan Bahasa Angkola: Kajian Linguistik Historis Komparatif dan Fonologi. Diss. Universitas Jambi, 2022.

Pranata, Billy, Yonata Laia, and Marulitua Lumban Gaol. "Perancangan Sistem Penyusunan Marga Suku Batak Toba Berbasis Web." Jurnal Sistem Informasi Dan Ilmu Komputer Prima (JUSIKOM PRIMA) 3.1 (2019): 17-23.

Pardosi, Jhonson. "Makna Simbolik Umpasa, Sinamot, dan Ulos pada Adat Perkawinan Batak Toba." Jurnal Ilmiah Bahasa dan Sastra 4.2 (2008): 101-108.

Hutagalung, Eka Fitrilia Sari, and Pardomuan Sitompul. "Implementasi Deep Learning Menggunakan Metode Cnn Untuk Klasifikasi Jenis Ulos Batak Toba." Student Scientific Creativity Journal 1.4 (2023): 01-19.

Fonda, Hendry. "Klasifikasi Batik Riau Dengan Menggunakan Convolutional Neural Networks (Cnn): Klasifikasi Batik Riau Dengan Menggunakan Convolutional Neural Networks (Cnn)." Jurnal Ilmu Komputer 9.1 (2020): 7-10.

Hawari, Fakhri Habib, et al. "Klasifikasi Penyakit Tanaman Padi Menggunakan Algoritma Cnn (Convolutional Neural Network)." Jurnal Responsif: Riset Sains dan Informatika 4.2 (2022): 184-189.

Azmi, Khairul, Sarjon Defit, and Sumijan Sumijan. "Implementasi convolutional neural network (CNN) untuk klasifikasi batik tanah liat sumatera barat." Jurnal Unitek 16.1 (2023): 28-40.

Ihdal, Ihdalhubbi Maulida. "Klasifikasi Kain Khas Batik Dan Kain Khas Sasirangan Dengan Menggunakan Metode Convolutional Neural Network." Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM) 6.1 (2021): 25-30.

Huda, Nurul, et al. "Klasifikasi Malaria Menggunakan Metode Image Processing Dari Sel Darah Merah Dengan Algoritma Convolutional Neural Network." JOINS (Journal of Information System) 7.2 (2022): 166-177.

Ibrahim, N. U. R., et al. "Klasifikasi Tingkat Kematangan Pucuk Daun Teh menggunakan Metode Convolutional Neural Network." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 10.1 (2022): 162.

Raharjo, Budi. "Deep Learning dengan Python." Penerbit Yayasan Prima Agus Teknik (2022): 1-131.

Saksenata, Achmad Fauzi, Agus Eko Minarno, and Yufis Azhar. "Klasifikasi Citra Sel Darah Untuk Penyakit Malaria Dengan Metode CNN." Repositor 4.2 (2022): 185-194.




DOI: https://doi.org/10.24114/j-ids.v3i1.60388

Article Metrics

Abstract view : 37 times
Pdf - 0 times

Refbacks

  • There are currently no refbacks.


Journal of Informatics and Data Science (J-IDS)

ISSN (Online) : 2964-0415

Published By Computer Science Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan.

Website: https://jurnal.unimed.ac.id/2012/index.php/jids/index

Email : jids@unimed.ac.id

This work is licensed under a Creative Commons Attribution 4.0 International License.