

JURNAL INOVASI PEMBELAJARAN KIMIA

(Journal of Innovation in Chemistry Education)

https://jurnal.unimed.ac.id/2012/index.php/jipk email: Jinovpkim@unimed.ac.id

Recieved : 15 September 2025 Revised : 22 October 2025 Accepted : 27 October 2025 Published : 31 Oktober 2025

Page : 242 - 253

The Relationship Between Collaborative Skills and Chemistry Learning Achievement

Dinnah Raihanah^{1*}, Achmad Ridwan² and Yuli Rahmawati³

^{1,2,3}Department of Chemistry Education, Universitas Negeri Jakarta, Indonesia

*Email: dinnahraihanah13@gmail.com

Abstract:

This study investigates the relationship between students' collaborative skills and their achievement in chemistry learning, particularly on the topic of acid—base concepts. Collaborative ability plays an essential role in supporting effective learning and knowledge construction, especially in cooperative classroom settings. The research involved 255 eleventh-grade students who completed both a collaborative skills questionnaire and a chemistry achievement test. The collaborative skills instrument consisted of 23 items covering 11 dimensions, while the achievement test assessed students' understanding of acid—base concepts. Data were analyzed using Spearman's correlation after confirming normality and identifying a non-linear relationship. The results revealed a positive and significant correlation between collaborative skills and learning achievement (r = 0.501; p < 0.001), with a determination coefficient of 25.1%. These findings indicate that students with stronger collaborative skills tend to achieve higher levels of conceptual mastery in chemistry. Overall, the study emphasizes the importance of developing collaboration competencies to enhance academic performance in science learning.

Keywords:

collaborative skills; learning achievement; multiple choice multiple answer; acid-base concept

INTRODUCTION

Twenty-first-century education requires students to develop critical, creative, collaborative, and adaptive thinking skills to face global challenges (Sa-Ngiemjit et al., 2025). In chemistry learning, which is recognized as a conceptual discipline, students often encounter difficulties in understanding the interconnections among complex concepts. This condition underscores the importance of mastering 21st-century skills to support a deeper understanding of chemistry concepts (Redhana, 2019). The

Partnership for 21st Century Learning categorizes these skills into three groups: information, media, and technology skills; life and career skills; and learning and innovation skills. Among these, collaborative ability is considered particularly important in the context of chemistry education (P21, 2019). Similarly, the Indonesian Ministry of Primary and Secondary Education has emphasized that one of the key dimensions of student graduate profiles is collaborative competence (Kemendikdasmen, 2025).

Previous research consistently highlights the vital role of collaboration in

enhancing student achievement. Effective collaboration enables learners to work together, share ideas, and strengthen their conceptual understanding (Lapitan et al., 2023). In the context of thermochemistry, Wulandari and Rohaeti (2024) emphasized that collaborative learning facilitates students' comprehension of macroscopic, microscopic, symbolic representations through and discussion and collective exploration, which helps them address misconceptions and build a more integrated understanding of chemical Beyond conceptual collaborative learning can also help students connect abstract chemical concepts with reallife contexts and engage more meaningfully in the learning process (Liao et al., 2019). Moreover, collaborative practices enhance social interaction and contribute to improved academic outcomes at the group level (Andrews et al., 2020). These findings affirm that collaboration contributes significantly to both the quality of the learning process and the learning achievement attained by students.

However, most previous studies have examined collaboration primarily as learning model rather than as an individual skill related to academic performance. Research that specifically analyzes relationship between collaborative ability and chemistry learning achievement remains limited, particularly in complex conceptual topics such as acid-base concepts. Acid-base concepts are fundamental in chemistry, yet numerous studies indicate that students continue to experience misconceptions. These misunderstandings appear in various aspects, including neutralization, the ionization of strong and weak acids and bases, reactions of acids with metals, and the electrical conductivity of solutions. Such misconceptions reveal students' difficulties in connecting submicroscopic and symbolic representations of chemical concepts, emphasizing the need not only for conceptual understanding but also for collaborative skills that support discussion, idea sharing, and clarification of reasoning. This underscores a gap between the demands of 21st-century

learning and the availability of empirical research (Nahadi et al., 2023).

Therefore, this study explicitly aims to determine the correlation between students' collaborative abilities and their chemistry learning achievement on acid-base concepts. The novelty of this research lies in its analysis of 21st-century skills, specifically collaboration within the context of chemistry learning, which is expected to provide theoretical contributions to the development of chemistry education literature as well as practical insights for teachers in designing learning strategies that foster collaboration.

LITERATURE REVIEW

Collaborative Skills

Collaborative skills refer to the ability to work together toward shared goals through effective communication, coordination, and contribution from each member (Qureshi et al., 2023). Within the learning context, collaboration enables students to integrate perspectives, exchange explanations, and construct knowledge collectively. Effective collaboration has been shown to enhance academic achievement and improve social interaction, benefiting both individuals and the group as a whole (Andrews et al., 2020; Haataja et al., 2022).

In chemistry learning, collaboration encourages students to reflect on prior conceptions, express ideas through multiple representations, and negotiate understanding with peers. This process promotes participation, feedback, and joint decision-making, resulting in more accurate conceptual understanding (Ying & Tiemann, 2024). Beyond strengthening mastery at the macroscopic, microscopic, and symbolic levels, collaboration also develops essential social competencies such as communication, teamwork, and responsibility, key attributes of 21st-century learners (Heeg et al., 2020).

Collaborative skills are interrelated with critical thinking, communication, and self-regulation. Their development should align with the learning content and the students' sociocultural context, and therefore

requires authentic, process-oriented assessments (Evans, 2020). In the framework 21st-century learning, collaboration extends beyond group work to encompass interpersonal and cognitive abilities such as open communication, conflict resolution, and decision-making. consensus-based chemistry education, these abilities can be fostered through project-based learning, structured discussions, and technologysupported collaboration (Boka et al., 2024). This aligns with the 4C framework, critical thinking, creativity, communication, collaboration, which underpins 21st-century education.

Empirical findings in chemistry reinforce these perspectives. education Siregar & Simatupang (2020), reported that students taught through problem-based learning on acid-base topics achieved higher levels of engagement and performance conventional methods. compared to demonstrating that active, discussion-oriented learning fosters both understanding and achievement. Similarly, project-based and inquiry-oriented chemistry instruction has been shown to improve collaborative competence and academic performance by involving students in meaningful problemsolving and authentic scientific practices (Simamora, 2022). Collaboration takes place in both face-to-face and online environments, providing opportunities for shared discussion and collective problem-solving. Consequently, it functions not only as a method of learning but also as an educational goal that promotes students' academic and social competence (Boholano, 2017).

A synthesis of international studies by Ha Le, Janssen & Wubbels (2018), Zheng et al. (2023), and Mphahlele (2024) identified major dimensions of collaborative assessment: social interaction, active participation, group regulation, communication, joint decision-making, and the quality of collaborative products. These studies emphasize that assessment should capture both outcomes and the underlying social-cognitive processes, providing

comprehensive framework for developing authentic instruments to evaluate collaboration (Le et al., 2018; Mphahlele, 2024; Zheng et al., 2023).

Chemistry Learning Achievement

achievement indicates Learning students' level of competence after instruction. It is categorized into cognitive, affective, and psychomotor domains. The cognitive domain includes intellectual abilities such as remembering, understanding, analyzing, and creating, as outlined in Bloom's revised taxonomy. The affective domain relates to attitudes and motivation. while the psychomotor domain involves skills that support learning activities (Suwannatrai, 2022).

This study focuses on the cognitive domain, which can be assessed through tests, discussions, projects, and other learning tasks (Sari & Rahmah, 2019). In chemistry, achievement reflects students' ability to understand concepts, apply knowledge, and solve experiment-based problems (Agustian et al., 2022). Achievement can be improved through instructional models that integrate problem-solving, experimentation, collaboration. Students who collaborate effectively tend to have higher motivation, engagement, and self-confidence, which enhance learning outcomes (Warsah et al., 2021). Interactive and contextual chemistry learning fosters deeper understanding and better achievement (Sinchai et al., 2023). However, many students still struggle to grasp acid-base concepts and to link abstract ideas (Linda et al., 2024). This highlights the need for approaches that promote both conceptual mastery and collaborative skill development.

Acid-Base Concepts as a Context

Acid-base theories—Arrhenius, Brønsted-Lowry, and Lewis—offer different criteria for identifying acids and bases. The strength of acids and bases is determined by their dissociation constants (Ka and Kb), with larger values indicating stronger properties (Zumdahl & Zumdahl, 2010). Indicators, such as litmus, change color within specific pH

ranges, while the pH scale provides a simple measure of acidity and alkalinity (Oxtoby et al., 2016; McMurry & Fay, 2012).

Acid-base concepts are ideal for exploring the link between collaboration and achievement because of their conceptual complexity and the need for teamwork in laboratory experiments. Rizal & Fitriza (2021) emphasize that successful learning of these concepts depends not only understanding but also on students' ability to collaborate, discuss, and adapt during experiments. Therefore, this study employs acid-base concepts as a context to examine collaboration influences chemistry learning achievement.

METHODS

Research Design

This study employed a quantitative approach with a correlational survey design. The purpose was to analyze the relationship between students' collaborative skills and their chemistry learning achievement on acidbase concepts. The research was conducted in three general phases: preparation (instrument development and preliminary observation), implementation (data collection), and completion (data analysis and reporting).

Participants

The participants consisted of 255 eleventh-grade students from four senior high schools. Schools were selected using purposive sampling, based on the implementation of instructional practices that promote collaboration. From each school, students were then chosen through simple random sampling (Cohen et al., 2007)

Instruments

Two research instruments were used in this study, namely a collaborative skills questionnaire and a chemistry learning achievement test. The collaborative skills questionnaire was designed as a self-assessment instrument using a five-point Likert scale. It was developed based on 21st-century skills and collaborative learning frameworks to measure students' ability to

communicate, coordinate, and contribute effectively during group activities (Hinyard et al., 2019). Meanwhile, the chemistry learning achievement test adopted a Multiple Correct Multiple Answer (MCMA) format to assess students' understanding of acid—base concepts, as this structure allows multiple correct responses and encourages deeper reasoning rather than mere guessing (Oc & Hassen, 2024).

Both instruments underwent expert validation and reliability testing to ensure quality. The content validity was assessed using the Content Validity Ratio (CVR) and Content Validity Index (CVI) (Lawshe, 1975), while the reliability was measured through Cronbach's Alpha and Inter-Rater Reliability (IRR). All items were found to be valid and reliable, with coefficients exceeding the recommended threshold ($\alpha > 0.80$). In addition, the Item Response Theory (IRT) approach was employed to analyze item difficulty, discrimination, and model fit. The Generalized Partial Credit Model (GPCM) was applied for the MCMA achievement test, while the Rating Scale Model (RSM) was used for the questionnaire, both selected according to the data characteristics (Andrich, 1978; Muraki, 1992). Misfitting items were removed based on statistical fit criteria, resulting in 17 valid test items and 23 valid questionnaire items used for data collection.

Data Analysis

Data analysis was conducted using SPSS version 27. The analytical procedures included descriptive statistics, assumption testing (normality, linearity), and Spearman's rank correlation to test the relationship between collaborative skills and chemistry learning achievement. The use of Spearman's correlation was based on the result of the linearity test, which indicated that the relationship between variables was not entirely linear.

Research Hypothesis

Based on the theoretical framework and prior studies, the research hypothesis is formulated as follows:

H₀: There is no significant correlation between students' collaborative skills and their chemistry learning achievement.

H₁: There is a positive and significant correlation between students' collaborative skills and their chemistry learning achievement.

RESULT AND DISCUSSION

The chemistry learning achievement test consisted of 17 Multiple Choice Multiple Answer (MCMA) items covering key acidbase topics, including acid-base properties, theoretical models (Arrhenius, Brønsted-Lowry, and Lewis), ionization constants, strength, and pH-related calculations (Zumdahl & Zumdahl, 2010). The distribution of items according to each concept is presented as follows:

Table 1. Distribution of Learning Achievement Test

Items by Concept		
Concept / Topic	Number of Items	
Role of acid-base	2	
solutions in daily life		
Properties of acid-base	1	
solutions		
Arrhenius theory	2	
Brønsted-Lowry theory	2	
Lewis theory	2	
Acid and base ionization	1	
constants (Ka and Kb)		
Acid-base strength	2	
Solution identification	1	
pH prediction	2	
pH calculation	2	

The results of the learning achievement test and the histogram graph are presented as follows:

Table 2. Chemistry Learning Achievement Data

Data	Result
Number of Respondents	255
Lowest Score	9
Highest Score	49
Maximum Score	51
Mean Score	37.78
Standard Deviation	7.77
Average Achievement	74.1 %

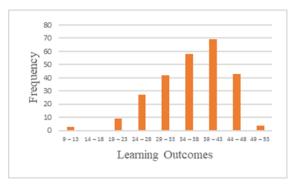


Figure 1. Histogram of Chemistry Learning Achievement

Results from the learning achievement test showed a wide distribution of scores, ranging from 9 to 49 out of a maximum of 51. The mean score of 37.78 (SD = 7.77) corresponded to an average achievement of 74.1%, indicating that students generally demonstrated a good understanding of acidbase concepts. The score distribution (Figure 1) revealed that most students fell within the medium-to-high range, suggesting adequate conceptual mastery but also notable variation across individuals.

In addition to the achievement test, students' collaborative skills were assessed using a self-report questionnaire consisting of 23 statements. The distribution of items according to each concept is presented as follows:

Table 3. Distribution of Collaborative Skills

Questionnaire imensions		
Dimensions	Number of Items	
Contribution	2	
Team support	1	
Team dynamics	2	
Interaction with others	3	

Role flexibility	1	
Participation	2	
Quality of work	3	
Time management	2	
Preparation,	2	
Reflection	1	
Team learning	4	

The collaborative skills data are presented as follows:

Table 4. Collaborative Skills Data

Data	Result
Number of Respondents	255
Lowest Score	23
Highest Score	114
Mean Score	82,34
Standard Deviation	14,30
Average Achievement	71,6%

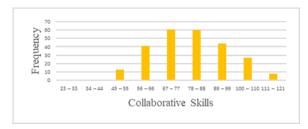


Figure 2. Histogram Collaborative Skills

The results of the collaborative skills questionnaire showed that students' scores ranged from 23 to 114, with a mean of 82.34 and a standard deviation of 14.30, equivalent to 71.6% of the maximum possible score. The histogram illustrates that most students scored within the medium-to-high range, indicating that their collaborative competence was generally well developed. This suggests that students were able to contribute actively, communicate effectively, and coordinate with peers during group activities. Nevertheless, the distribution also shows some variation across individuals, reflecting differences in students' consistency and engagement within collaborative tasks.

Following the findings that both chemistry learning achievement and

collaborative skills were categorized as good, with scores concentrated in the medium-tohigh range, assumption tests were conducted to verify data suitability for inferential analysis. The normality test using the One-Sample Kolmogorov-Smirnov Test yielded a significance value of 0.074 (p > 0.05), indicating that the data were normally distributed. However, the linearity test Deviation showed from Linearity significance of 0.019 (p < 0.05), suggesting that the relationship between the two variables was not fully linear. Based on these results, nonparametric Spearman's correlation test was used for hypothesis testing.

 Table 5. Results of Spearman's Rank Correlation Test

Spearman'srho	N	255
	Correlation Coefficient	0,501
	Sig. (2-tailed)	<,001

The Spearman's correlation analysis revealed a significance value of < 0.001 (p < 0.05), indicating a statistically significant and positive relationship between collaborative skills and their chemistry learning achievement. The correlation coefficient of 0.501 suggests a moderately strong association (Dancey & Reidy, 2004), implying that students with higher collaborative skills tend to achieve better learning outcomes. The coefficient determination ($r^2 = 25.1\%$) further indicates that collaboration contributes meaningfully to academic performance, although it is not the sole influencing factor.

Collaborative engagement enables students to expand their understanding through shared learning experiences, idea exchange, and constructive interaction, all of which strengthen comprehension and support the achievement of common academic goals (Hasan et al., 2023; Sokhanvar et al., 2021). Collaboration, however, does not develop in isolation; it is inherently linked to the cultivation of other essential competencies. Among these, communication, adaptability, critical thinking, and problem-solving serve as

core components that help students work productively with others and navigate complex learning situations.

Communication refers to the ability to convey and interpret messages effectively through speaking, writing, active listening, and persuasive interaction. These skills are essential for building mutual understanding, fostering cooperation, and ensuring that collaborative processes are carried productively (Karaca-Atik et al., 2023). Alongside communication, adaptability plays a crucial role in supporting collaboration. It represents the capacity to adjust one's thoughts and behaviors in response to new or uncertain learning situations. In this regard, adaptability enables students to embrace diverse perspectives and remain engaged in dynamic environments, forming a solid foundation for achieving shared goals (Negru-Subtirica & Pop, 2016).

Critical thinking and problem-solving also reinforce collaboration in chemistry learning. Critical thinking allows students to analyze information logically, evidence, and make reasoned judgments when confronting complex problems, which contributes to a deeper and more meaningful understanding (Kotsiou et al.. 2022). problem-solving Meanwhile, involves identifying challenges, generating strategies, applying knowledge to real-world contexts through logical reasoning. As key 21st-century competencies, these skills not only support academic achievement but also prepare students to respond effectively to the evolving demands of modern education (Yalçın & Erden, 2021).

Recent studies in chemistry education also confirm the growing importance of collaboration in improving learning outcomes. Auliah & Cahyani (2024), found that research trends from 2019–2024 have increasingly focused on collaborative and inquiry-based learning, reflecting global efforts to integrate 21st-century skills into chemistry instruction. Their results align with the findings of this study, which demonstrate that collaboration significantly contributes to

students' conceptual understanding academic performance. Likewise, Adlar Fadli et al., (2025), reported that video-assisted Problem-Based Learning and Discovery Learning enhanced students' mastery of acidconcepts, emphasizing that noncognitive skills such as motivation and collaboration play a vital role in improving achievement. Furthermore, Elisabeth Frenklin Pangaribuan & Ani Sutiani (2025), showed that problem-based learning supported by virtual laboratory media leads to higher achievement compared traditional or game-based approaches. These consistent findings indicate that interactive, inquiry-oriented, and collaborative learning environments effectively foster both understanding, engagement and key dimensions of successful chemistry learning.

In summary, communication, adaptability, critical thinking, and problemsolving collectively strengthen students' collaborative abilities, leading to meaningful interaction and improved learning outcomes. In chemistry education, such competencies contribute to achievement by enhancing students' capacity to apply knowledge, connect abstract concepts with real-world contexts, and engage critically with problems. Individual, social, and institutional factors also shape student achievement. Cognitive ability, motivation, and emotional readiness provide the foundation for learning (Ishida & Sekiyama, 2024), while socioeconomic background influences access to resources and learning opportunities (Kocak et al., 2021). Additionally, teacher classroom climate, and learning materials significantly affect academic success (Suleiman et al., 2024).

Therefore, improving chemistry learning achievement requires instructional approaches that promote active engagement and collaboration, such as problem-based or project-based learning. The use of diverse learning resources—including visual aids, digital tools, and formative assessments with timely feedback—can further help students construct and refine their understanding.

Strengthening collaboration and its related competencies not only deepens conceptual mastery but also enhances students' ability to learn meaningfully and achieve higher academic performance.

CONCLUSION

This study found a positive and significant correlation between students' collaborative skills and their chemistry learning achievement on acid-base Students with concepts. stronger collaborative abilities tended to achieve higher learning outcomes, with collaboration contributing approximately 25.1% to overall achievement. These findings confirm that collaboration plays a key role in supporting students' conceptual understanding and cognitive performance chemistry in learning.

Beyond these findings, the results carry important implications for educational practice and policy. Teachers should design classroom activities that actively foster collaboration, such as group experiments, project-based learning, and peer discussions, strengthen both academic interpersonal competencies. Meanwhile. policymakers and curriculum developers are encouraged to emphasize collaborative skills as a core component of science education standards and assessments, ensuring that 21st-century competencies systematically integrated into teaching and learning processes.

REFERENCE

- Agustian, H. Y., Finne, L. T., Jørgensen, J. T., Pedersen, M. I., Christiansen, F. V., Gammelgaard, B., & Nielsen, J. A. (2022).Learning outcomes of university chemistry teaching laboratories: A systematic review of empirical literature. Review of *10*(2), Education, 1–41. https://doi.org/10.1002/rev3.3360
- Andrews, D. A., Sekyere, E. O., & Bugarcic, A. (2020). Collaborative Active Learning Activities Promote Deep Learning in a Chemistry-Biochemistry

- Course. *Medical Science Educator*, 30(2), 801–810. https://doi.org/10.1007/s40670-020-00952-x
- Andrich, D. (1978). A rating formulation for ordered response categories. *Psychometrika*, *43*(4), 561–573. https://doi.org/10.1007/BF02293814
- Auliah, A., & Cahyani, V. P. (2024). Exploring Trends in Chemical Education: A Bibliometric Analysis (2019-2024). *Jurnal Inovasi Pembelajaran Kimia*, 6(2), 297. https://doi.org/10.24114/jipk.v6i2.642
- Boholano, H. (2017). Smart social networking: 21st Century teaching and learning skills. *Research in Pedagogy*, 7(2), 21–29. https://doi.org/10.17810/2015.45
- Boka, T., Bezabih, A., Tadesse, S., & Wasyhun, A. (2024). Awareness and perceptions towards practices of twenty-first century skills in chemistry education in the secondary schools. International Journal of Sciences: Basic and Applied Research (IJSBAR) International Journal of Sciences: Basic and Applied Research, 73(1), 548–578.
- Cohen, L., Manion, L., & Morrison, K. (2007). Research Methods in Education. In *Research Methods in Education* (Sixth). Routledge.
- Dancey, C. P., & Reidy, J. (2004). *Statistics Without Maths for Psychology*.
- Elisabeth Frenklin Pangaribuan, & Ani Sutiani. (2025). Analysis of Students' Learning Outcomes Using Problem-Based Virtual Lab and Monopoly on Reaction Rates. *Jurnal Inovasi Pembelajaran Kimia*, 7(1), 134–143. https://doi.org/10.24114/jipk.v7i1.67940
- Evans, C. (2020). Measuring student success skills: A review of the literature on collaboration. *National Center for the*

- Improvement of Educational Assessment, 1–30.
- Fadli, A., Panggabean, F. T. M., & Novita Aruan. (2025). Motivation and Learning Outcomes in Acid-Base Topics Using Video-Assisted PBL and Discovery Learning. *Jurnal Inovasi Pembelajaran Kimia*, 7(1), 162–168. https://doi.org/10.24114/jipk.v7i1.679 47
- Hasan, M., Arisah, N., Ratnah S, Ahmad, M. I. S., & Miranda. (2023). Experiential Learning Model for the Development of Collaborative Skills through Project Based Learning Practicum. *JPI (Jurnal Pendidikan Indonesia)*, *12*(2), 340–349. https://doi.org/10.23887/jpiundiksha. v12i2.57376
- Heeg, J., Hundertmark, S., & Schanze, S. (2020). The interplay between individual reflection and collaborative learning-seven essential features for designing fruitful classroom practices that develop students' individual conceptions. *Chemistry Education Research and Practice*, 21(3), 765–788. https://doi.org/10.1039/c9rp00175a
- Hinyard, L., Toomey, E., Eliot, K., & Breitbach, A. (2019).Student Perceptions of Collaboration Skills in Interprofessional Context: Development and Initial Validation of the Self-Assessed Collaboration Skills Instrument. Evaluation and the Health Professions, 42(4), 450-472. https://doi.org/10.1177/01632787177 52438
- Ishida, A., & Sekiyama, T. (2024). Variables influencing students' learning motivation: critical literature review. *Frontiers in Education*, 9. https://doi.org/10.3389/feduc.2024.14 45011
- Karaca-Atik, A., Meeuwisse, M., Gorgievski, M., & Smeets, G. (2023). Uncovering important 21st-century skills for

- sustainable career development of social sciences graduates: A systematic review. *Educational Research Review*, 39. https://doi.org/10.1016/j.edurev.2023. 100528
- Kemendikdasmen. (2025). *Pembelajaran Mendalam*. 75.
- Kocak, O., Goksu, I., & Goktas, Y. (2021). The factors affecting academic achievement: A systematic review of meta analyses. *International Online Journal of Education and Teaching (IOJET)*, 8(1), 454–484.
- Kotsiou, A., Fajardo-Tovar, D. D., Cowhitt, T., Major, L., & Wegerif, R. (2022). A scoping review of Future Skills frameworks. *Irish Educational Studies*, 41(1), 171–186. https://doi.org/10.1080/03323315.202 1.2022522
- Lapitan, L. D. S., Chan, A. L. A., Sabarillo, N. S., Sumalinog, D. A. G., & Diaz, J. M. S. (2023). Design, implementation, and evaluation of an online flipped classroom with collaborative learning model in an undergraduate chemical engineering course. *Education for Chemical Engineers*, 43, 58–72. https://doi.org/https://doi.org/10.1016/j.ece.2023.01.007
- LAWSHE, C. H. (1975). a Quantitative Approach To Content Validity. *Personnel Psychology*, 28(4), 563–575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
- Le, H., Janssen, J., & Wubbels, T. (2018). Collaborative learning practices: teacher and student perceived obstacles effective student collaboration. Cambridge Journal of Education, 48(1), 103–122. https://doi.org/10.1080/0305764X.20 16.1259389
- Liao, C. W., Chen, C. H., & Shih, S. J. (2019).

 The interactivity of video and collaboration for learning

- achievement, intrinsic motivation, cognitive load, and behavior patterns in a digital game-based learning environment. *Computers and Education*, 133, 43–55. https://doi.org/10.1016/j.compedu.20 19.01.013
- Linda, D., Menno, A. W. M., & Simanjuntak, Y. I. W. (2024). Analysis of Problems in Learners' Collaboration Ability towards Chemistry Learning: Systematic Literature Review. *Jurnal Penelitian Pendidikan IPA*, 10(11), 784–792.
 - https://doi.org/10.29303/jppipa.v10i1 1.7326
- McMurry, J. E., & Fay, R. C. (2012). *Chemistry* (Sixth). Pearson Education Inc.
- Mphahlele, R. (2024). A Review of Research on Collaborative Assessments in the Open Distance and e-Learning Environment. *Journal of Learning for Development*, 11(2), 206–219. https://doi.org/10.56059/jl4d.v11i2.76
- Muraki, E. (1992). A Generalized Partial Credit Model: Application of an EM Algorithm Index terms: item response model, National Assess-ment of Educational Progress, nominal response model, partial credit model, polytomous response model, rating scale model. *Applied Psychological Measurement*, *Uj* 1, 159–176.
- Nahadi, N., Siswaningsih, W., Firman, H., Dewi, E. P., Lestari, T., & Rahmawati, T. (2023). Development and Application of a Two-Tier Acid-Base Misconception Diagnostic Test Based on Pictorial To Identifying Student Misconceptions in Chemistry. *Journal of Engineering Science and Technology*, 18, 207–223.
- Negru-Subtirica, O., & Pop, E. I. (2016). Longitudinal links between career adaptability and academic achievement in adolescence. *Journal*

- of Vocational Behavior, 93(37), 163–170. https://doi.org/10.1016/j.jvb.2016.02.
- Oc, Y., & Hassen, H. (2024). Comparing The Effectiveness Of Multiple-Answer And Single-Answer Multiple-Choice Questions In Assessing Student Learning. *Marketing Education Review*, 35(1), 44–57. https://doi.org/10.1080/10528008.202 4.2417106
- Oxtoby, D. W., Gillis, H. ., & Butler, L. J. (2016). *Principles of Modern Chemistry* (Eighth). Cengage Learning.
- P21. (2019). Framework for 21st century learning. *Partnership for 21st Century Learning*, 1–2.
- Qureshi, M. A., Khaskheli, A., Qureshi, J. A., Raza, S. A., & Yousufi, S. Q. (2023). Factors affecting students' learning performance through collaborative learning and engagement. *Interactive Learning Environments*, 31(4), 2371–2391.
 - https://doi.org/10.1080/10494820.202 1.1884886
- Redhana, I. W. (2019). Mengembangkan Keterampilan Abad Ke-21 Dalam Pembelajaran Kimia.
- Rizal, N., & Fitriza, Z. (2021). Deskripsi Keterampilan Komunikasi dan Kolaborasi Siswa SMA pada Pembelajaran Titrasi Asam-Basa dengan Model Inkuiri Terbimbing dan Berbasis Masalah. *Edukimia*, 3(1), 031–037. https://doi.org/10.24036/ekj.v3.i1.a21
- Sa-Ngiemjit, M., Vázquez-Alonso, Á., & Manassero-Mas, M. A. (2025). High school students' 21st-century learning skills in organic chemistry group
 - learning. International Journal of Evaluation and Research in Education, 14(2), 1417–1426.

- https://doi.org/10.11591/ijere.v14i2.3 0607
- Sari, I. D. P., & Rahmah, T. H. (2019). Virtual Discussion for **EFL** Students Establishing Three Domains: Affective, Cognitive, and Psychomotor. International Journal for Educational and **Vocational** Studies. 1(3),249-253. https://doi.org/10.29103/ijevs.v1i3.15
- Simamora, K. F. (2022). Kemampuan HOTS Siswa Melalui Model PjBL Ditinjau dari Kemampuan Literasi Kimia Siswa. *Jurnal Inovasi Pembelajaran Kimia*, 4(1), 55. https://doi.org/10.24114/jipk.v4i1.335 88
- Sinchai, P. S., Thongchai, A., & Hajimasalaeh, W. (2023). Learning Achievement and Student Satisfaction in the STEM Education through Professional Learning Community in the Chemistry Class of Secondary School Students in the Southern Region of Thailand during Pandemic. *Journal of Education Studies*, 51(1), 1–12. https://doi.org/10.58837/chula.educu. 51.1.9
- Siregar, W. D., & Simatupang, L. (2020).

 Pengaruh Model Pembelajaran PBL

 Terhadap Aktivitas Belajar Dan Hasil

 Belajar Siswa Pada Materi Asam Basa. *Jurnal Inovasi Pembelajaran Kimia*,

 2(2), 91.

 https://doi.org/10.24114/jipk.v2i2.195

 71
- Sokhanvar, Z., Salehi, K., & Sokhanvar, F. (2021). Advantages of authentic assessment for improving the learning experience and employability skills of higher education students: A systematic literature review. *Studies in Educational Evaluation*, 70(March), 101030. https://doi.org/10.1016/j.stueduc.2021.101030

- Suleiman, I. B., Okunade, O. A., Dada, E. G., & Ezeanya, U. C. (2024). Key factors influencing students' academic performance. *Journal of Electrical Systems and Information Technology*, 11(1). https://doi.org/10.1186/s43067-024-00166-w
- Suwannatrai, B. (2022). The perspective of 3 domains of learning: cognitive, psychomotor, and affective in english learning of higher education in Thailand. *NeuroQuantology*, 20(22), 1963–1979. https://doi.org/10.48047/nq.2022.20.2 2.NQ10184
- Warsah, I., Morganna, R., Uyun, M., Hamengkubuwono, H., & Afandi, M. (2021). The Impact of Collaborative Learning on Learners' Critical Thinking Skills. *International Journal of Instruction*, 14(2), 443–460. https://doi.org/10.29333/iji.2021.1422 5a
- Wulandari, T., & Rohaeti, E. (2024). Research-Oriented Collaborative (REORCILEA) Learning Inquiry Improvement of Students' Model: Critical **Thinking** Ability and Collaborative Skills Thermochemistry of Materials. Jurnal Penelitian Pendidikan IPA, 10(9), 6809-6814. https://doi.org/10.29303/jppipa.v10i9. 8355
- Yalçın, V., & Erden, Ş. (2021). The Effect of STEM Activities Prepared According to the Design Thinking Model on Preschool Children's Creativity and Problem-Solving Skills. *Thinking Skills and Creativity*, 41(February). https://doi.org/10.1016/j.tsc.2021.100 864
- Ying, Y., & Tiemann, R. (2024).

 Development of an assessment tool for collaborative problem-solving skills in chemistry. Disciplinary and Interdisciplinary Science Education Research, 6(1).

Dinnah Raihanah, Achmad Ridwan and Yuli Rahmawati Jurnal Inovasi Pembelajaran Kimia (Journal Of Innovation in Chemistry Education) Volume 7, Issue 2, October 2025 The Relationship Between Collaborative Skills and Chemistry Learning Achievement

https://doi.org/10.1186/s43031-024-00116-6

Zheng, L., Long, M., Chen, B., & Fan, Y. (2023).Promoting knowledge elaboration, socially shared regulation, performance group collaborative learning: an automated assessment and feedback approach knowledge on graphs. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00415-4

Zumdahl, S. S., & Zumdahl, S. A. (2010). *Chemistry* (Eighth). Brooks Cole.