The effect of composition and substrate fermentation duration on microbial fuel cell electrical energy

Christin Vera Natalia Ginting, Jumaida Sari Nasution, Malik Alfatah Sembiring, Murniaty Simorangkir

Abstract


Organic vegetable wastes such as mustard vegetables found in traditional markets, especially Medan, are quite abundant and the increase in electricity demand is not matched by the availability of adequate energy sources, encouraging efforts to find alternative sources of renewable energy, economical and environmentally friendly. Microbial Fuel Cell (MFC) reactors can be used as an alternative energy source that converts chemical energy into electrical energy through biocatalytic reactions using microorganisms by utilizing organic materials. This study aims to determine the effect of the use of mustard vegetable waste substrate with a variety of starters and fermentation duration in the MFC reactor system to the voltage and current of electrical energy generated. The design of this study used a factorial 4x2 Completely Randomized Design consisting of two factors, namely factor A substrate composition and fermentation duration B factor. The results showed that there was an influence of substrate composition and fermentation duration on the MFC reactor system on the electrical energy generated by the system. Electricity (I) (20.1 mA) and voltage (72.13 mV) highest electricity produced by MFC reactor with composition of glucose substrate and EM4 starter with 5 days fermentation duration, followed by the treatment of vegetable mustard waste and EM4 with a fermentation duration of 5 days (15.2 mA and 68.76 mV). In terms of economics, the use of vegetable mustard waste substrate material with EM4 starter in the MFC reactor has more potential to be developed than using glucose substrates which are relatively more expensive.

Keywords: Electric energy; fermentation duration; microbial fuel cell; mustard vegetable waste


Full Text:

PDF

References


Cheng, S., Liu, H., & Logan, B. E. (2006a). Increased performance of single chambered MFCs using an improved cathode structure. Electro. Chem. Biocommunity, 8(3), 888-891, doi: 10.1016/j.elecom.2006.01.010

Cheng, S., Liu, H., & Logan, B. E. (2006b). Increased power generation in a continuous flow mfc with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology, 40(7), 2426–2432, doi: 10.1021/es051652w

Du Z., Li H., Gu T. 2007. A state art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464-482, doi: 10.1016/j.biotechadv.2007.05.004

Ibrahim, B., Suptijah, P., & Adjani, Z. N. (2017). Kinerja microbial fuel cell penghasil biolistrik dengan perbedaan jenis elektroda pada limbah cair industri perikanan. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(2), 296-304.

Liu, H., & Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental science & technology, 38(14), 4040-4046, doi: 10.1021/es0499344

Nasution, H. I., & Silaban, S. (2017). analisis logam berat pb dan cd dalam air sumur di sekitar lokasi pembuangan sampah akhir. Jurnal ITEKIMA, 1(1), 17-24.

Pandey, B. K., Mishra, V., & Agrawal, S. (2011). Production of bio-electricity during wastewater treatment using a single chamber microbial fuel cell. International Journal of Engineering, Science and Technology, 3(4), 42-47, doi: 10.4314/ijest.v3i4.68540

Purwono, P., Hermawan, H., & Hadiyanto, H. (2015). Penggunaan teknologi reaktor microbial fuel cells (Mfcs) dalam pengolahan limbah cair industri tahu untuk menghasilkan energi listrik. Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan, 12(2), 57-65.

Romadhoni, H. A., & Putu, W. (2014). Pembuatan biogas dari sampah pasar. Envirotek: Jurnal Ilmiah Teknik Lingkungan, 6(1), 59-64.

Sari, D. A., Ratnasari, E., & Fitrihidajati, H. (2015). Pemanfaatan limbah ternak kambing etawa sebagai bahan pupuk organik cair untuk budi daya baby corn. LenteraBio, 4(2), 143-149.

Scott, K., & Murano, C. (2007). Microbial fuel cells utilising carbohydrates. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 82(1), 92-100, doi: 10.1002/jctb.1641

Silaban, S., & Simamora, P. (2018). Isolasi dan karakterisasi bakteri penghasil amilase dari sampel air tawar Danau Toba. EduChemia (Jurnal Kimia dan Pendidikan), 3(2), 222-231.

Wijeyekoon, S., Mino, T., Satoh, H., & Matsuo, T. (2004). Effects of substrate loading rate on biofilm structure. Water Research, 38(10), 2479-2488, doi: 10.1016/j.watres.2004.03.005




DOI: https://doi.org/10.24114/jpkim.v11i3.15773

Article Metrics

Abstract view : 301 times
PDF - 240 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Christin Vera Natalia Ginting, Jumaida Sari Nasution, Malik Alfatah Sembiring, Murniaty Simorangkir

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Pendidikan Kimia
Contact: +62 853-1769-2813
Email: jpkim.pps@unimed.ac.id

Jl. Willem Iskandar, Pasar V, Medan Estate, Medan City, North Sumatra Province, Postal Code 20221. Phone/fax: (061) 661 3365 / +62 852-7802-1981.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.