Mengatasi Bias pada Penduga Parameter Metode Kuadrat Terkecil dalam Analisis Regresi Linear Sederhana dengan Bootstrap Data Berpasangan

Robinsar Pakpahan, Elmanani Simamora

Abstract


The assumption of normality cannot be fulfilled in regression analysis if there are outliers in observation data so that peduga parameters using LSM (Least Square Method) will produce biased estimators and not BLUE (Best Linear Unbiased Estimator). Based on this, the bootstrap method which is a repeat sampling method (resampling) that does not require distribution assumptions on the data can be used. In this study, paired bootstrap data method is used for simulation data with the number of outliers of 5%, 10% and 15%. This is to show how the influence of outliers on the distribution of data if the outliers given have different amounts. After estimating the parameters using paired bootstrap data, parameter estimator values and the resulting bias are not much different from the MKT parameter estimator values before being given an outlier. In this study at a 99% confidence interval for the case of simulation data with 10% and 15% of the parameter estimator outliers obtained in the previous study and in this study no longer produce BLUE estimators as in the simulation data with 5% outliers. [OVERCOMING BIAS IN PARAMETER ESTIMATORS OF THE LEAST SQUARE METHOD IN A SIMPLE LINEAR REGRESSION ANALYSIS WITH PAIRED DATA BOOTSTRAP] (J. Sains Indon., 42(2): 31-37, 2018)

Keywords:
Least Square Method, Best Linear Unbiased Estimator, Paired Bootstrap


Full Text:

PDF

References


Astari, D. (2014): Jurnal: Penerapan metode bootstrap residual dalam mengatasi bias pada penduga parameter analisis regresi, E-jurnal Matematika Universitas Udayana Bali, 3(4), 130–137.

Dekking, dkk. (2005): A modern introduction to probabiliy and sttatistics, Vol. 1 of 1, Springer Science and business media, New York.

Draper dan Smith (1992): Analisis Regresi Terapan, 2nd Edition, PT Gramedia Pustaka Utama, Jakarta.

Dudewicz, E. J., dan satya N Mirsa (1995): Modern matematical statistics, Vol. 1 of 1, ITB, Bandung.

Efron dan Thibsirani (1993): An introduction to the bootstrap, 2nd Edition, Chapman and Hall, New York.

Fallo, dkk. (2013): Jurnal: Uji normalitas berdasarkan metode Anderson Darlingg, Mathematics, 152.

Michael, C., (2007): Bootstrap Methods: A Guide for Practitioners and Researchers, Vol. 1 of 2, A John Wiley and sons, inc., Publication, New York.

Paludi, S., (2009): Jurnal:Identifikasi dan pengaruh data pencilan(outlier), Mathematics, VI, 56–62.

Rousseeuw dan Leroy (1987): Robust Regression and Outlier Detection, 1st Edition, John Wiley and Sons, New York.

Shaw, J., dan Tu, D., (1995): The Jackknife and bootstrap, 1st Edition, Springer science and business media, New York.

Simamora, E., (2015): Sifat Asimtotik Variansi Kriging Bootstraping Semiparametrik Dalam Simulasi Deterministik, Disertasi Matematika Universitas Gadjah Mada Yogyakarta, 36–41.

Suparman (2012): Pengantar Bootstrap dan Aplikasinya, Vol. 1 of 1, JPMIPA FKIP UAD Press, Yogyakarta.

Walpole, R., (2000): Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan, 9, ITB, Bandung.

Weisberg, S., (2007): Aplied Linear Regression, Vol. 1 of 1, John Wiley and Son Inc, New York.




DOI: https://doi.org/10.24114/jsi.v42i2.12246

Refbacks

  • There are currently no refbacks.


View My Stats