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Abstract

Rice (Oryza sativa) is a key food commodity in Indonesia and plays a crucial role in
ensuring national food security. South Lampung Regency, particularly Natar and Jati
Agung Sub-districts, significantly contributes to rice production in the province.
However, conventional rice yield estimation methods face limitations in terms of time,
labor, and cost. This study aims to analyze the relationship between vegetation
indices —Modified Soil Adjusted Vegetation Index (MSAVI), Soil Adjusted Vegetation
Index (SAVI), and Rice Growth Vegetation Index (RGVI)—and rice productivity, as
well as estimate rice yield using Sentinel-2A imagery in the study area. Data used
include 2024 Sentinel-2A imagery and productivity measurements from 53 field
observation points. The methods involve image classification, vegetation index
calculation (SAVI, MSAVI, RGVI), Pearson correlation analysis, and yield estimation
using multiple linear regression. The correlation results show r values of 0.870 (SAVI),
0.852 (MSAVI), and 0.667 (RGVI). The regression model yields an R? of 0.823 and an
adjusted R? of 0.812. Yield estimates were classified into three categories: low (3.39-4.76
tons/ha), medium (4.76-6.13 tons/ha), and high (>6.13 tons/ha). This study
demonstrates that remote sensing has strong potential to support sustainable
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agricultural practices and accurate, continuous rice yield estimation.
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INTRODUCTION

Rice (Oryza sativa) is one of
Indonesia's most important cultivated crops,
producing rice that serves as the staple food
for most of the population (Rahaldi et al,
2013; Graha et al, 2022). The importance of
rice can be seen from its contribution to
national food security, where the availability
of rice becomes a strategic indicator to assess
the stability of a country (IRRI, 2007). One of
the challenges in rice cultivation is the
uncertainty of yields, which can reduce food
security levels (Hakim et al, 2024).

To address this, Law No. 41 of 2009 on
the Protection of Sustainable Food
Agricultural Land mandates the availability
of sustainably protected agricultural land to
ensure food security, create employment,
and achieve equitable welfare. This policy
aligns with the principles of agrarian reform,
which emphasize the sustainable utilization
of agricultural resources. Such protection is
needed across all regions, given that

agriculture is one of the main pillars of the
national economy (Putri et al, 2022).

Lampung Province is one of the rice
production centers in Indonesia. Data from
Statistics Indonesia (BPS) in 2023 shows that
the agricultural sector contributed 27.29% to
the province's economy. South Lampung
Regency is one of the key rice production
areas, with a total rice field area of 38,688
hectares spread across 17 districts. Natar and
Jati Agung Sub-districts have significant rice
cultivation activities, with a total production
of 62,447 42 tons of dry harvested rice in 2022
(BPS, 2024). This considerable contribution
highlights the importance of rice yield
estimation to ensure food availability and
support sustainable agricultural planning
(Genc, 2014; Kania, 2010).

Rice production estimation has been
widely carried out by government agencies
such as BULOG, BPS, the Directorate
General of Food Crop Production and
Horticulture, and local Agricultural Offices
(Graha et al, 2022). However, most methods
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are still conventional, requiring long
processing times, considerable labor input,
and high costs. They are also limited to
harvest periods without monitoring the crop
growth phases (Said, 2015; Kusmana, 2003).
With technological advances, remote
sensing has emerged as an alternative for
more efficient rice crop monitoring.

Remote sensing technology enables
periodic monitoring with wide coverage and
efficient spatial analysis. Sentinel-2A
imagery is widely used due to its high
spatial, temporal, and spectral resolution,
offering 13 spectral bands: 4 bands at 10 m,
six bands at 20 m, and three bands at 60 m,
with a swath width of 290 km (Alit et al,,
2021). To optimize image processing, Google
Earth Engine (GEE), a cloud-based
geospatial computing platform, is used for
large-scale and efficient data processing
(Gorelick et al., 2017).

Research has been conducted using
remote sensing and vegetation indices to
monitor rice growth and estimate yields.
Rokhmatuloh et al. (2020) showed that the
Normalized Difference Vegetation Index
(NDVI)  from  Sentinel-2A  imagery
effectively estimated yield. Ariani et al
(2020) found NDVI results to be closest to
field data compared to EVI and SAVIL
Sudarsono et al. (2016) also concluded that
NDVI was the best for growth stage analysis,
while Putra et al. (2018) showed that NDVI-
based yield estimation models are highly
suitable. However, NDVI has limitations,
such as saturation in dense canopy areas and
sensitivity to atmospheric and soil
background variations (Sari et al., 2015).

The Soil Adjusted Vegetation Index
(SAVI) was developed to overcome these
limitations. SAVI introduces a soil
brightness correction factor (L) to reduce soil
background reflectance effects, making it
more accurate for areas with sparse
vegetation or exposed soil. The Modified
Soil Adjusted Vegetation Index (MSAVI)
was later introduced to optimize SAVI

without manual L-value determination,
offering automatic correction for soil
background effects. MSAVI is highly
effective in agricultural systems with high
soil variability or open field cycles (Sarietal.,
2015). Meanwhile, the Rice Growth
Vegetation Index (RGVI) has been
developed to capture better rice-specific
growth parameters (Graha et al, 2022).
Based on these considerations, this study
aims to analyze the relationship between
MSAVI, SAVI, and RGVI indices and rice
productivity and estimate rice yields using
Sentinel-2A imagery in Natar and Jati
Agung Sub-districts.

RESEARCH METHODS

This research will be conducted in Jati
Agung and Natar Sub-districts, South
Lampung Regency. Astronomically, these
sub-districts are located between 105°10"7”
to 105°27°9” East Longitude and 5°3’51” to
5°26’33” South Latitude. Jati Agung and
Natar have extensive agricultural land
distributed across various irrigation
systems, ranging from technical irrigation to
rainfed rice fields. The area’s topography is
predominantly low to moderate plains, with
diverse irrigation systems. This situation
provides opportunities for in-depth research
on crop density across different land types
and irrigation systems.

Generally, rice yields in Jati Agung
and Natar vary considerably, depending on
water availability, cultivation techniques,
and local agroecosystem conditions. Some
areas with well-managed technical irrigation
systems can produce high yields, whereas
yields tend to fluctuate in rainfed areas.
Farmers’ capacity also influences these
differences in land management, the use of
superior varieties, and fertilization intensity.
Therefore, these sub-districts provide ideal
conditions for observing and comparing the
influence of environmental variations and
farming practices on yield estimation. The
location map is shown in Figure 1.
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Figure 1. Research Location (Source: Data Processing, 2025)

'Citra Sentinel
2Ayang
terkoreksi
Shapefile batas > -
strasi » Indeks Vegetasi
¥ ¥
| sav1 | [ wmsav | [ RGVI |
L J

Survei Lapangan

i |
| Nilai Indeks
y
Peta Kerapatan
Indeks Vegetast

Model Regresi Linier
Berganda

Uji Asumsi Klasik

Ui Kelayakan Model

Estimasi Produktivitas
Padi

Peta Estimasi
Produksi Padi

Figure 2 Research Stage (Source: Data Processing, 2025)
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Tools and Materials
The tools and materials used for this
research are as follows:
1. Sentinel 2A imagery
2. Rice field shapefile (classification results)
3. Interview survey data
4. Subdistrict administrative boundary
shapefile
5. Google Earth Engine
6. Google Colab
7. Avenza

Data Collection

This study collected two types of data:
primary and secondary. The secondary data
used is Sentinel-2A imagery recorded in
2024. The primary data required for this
study were rice production data obtained
through field observations. Data collection
was carried out in the sub-districts of Natar
and Jati Agung. This primary data included
information on actual production yields at
each observation point.

Implementation Stage
The series of steps in this study is presented
in a flowchart.

Data Pre-processing
The pre-processing stage was carried
out to prepare Sentinel-2A imagery before

analysis. The dataset employed was
Sentinel-2A Level-2A (surface reflectance),
obtained from the Google Earth Engine
(GEE) platform. This imagery had already
undergone geometric and radiometric
corrections by ESA; therefore, no additional
geometric accuracy assessment or
radiometric  correction was required.
Subsequently, the imagery was clipped
using the administrative boundaries of
Natar and Jati Agung sub-districts in
shapefile (.shp) format. This clipping process
aimed to restrict the analysis area to the
study region, thereby ensuring efficiency
and focus.

Data Processing

The data processing stage included
calculating vegetation indices, land use
classification, field surveys, statistical
analysis, and the development of production
estimation maps.

Vegetation Index Transformation

Vegetation indices were calculated to
extract vegetation density information from
multispectral imagery. The index used
included RGVI, SAVI, and MSAVI, with the
following formulas:

SAVI = Wear Infrared—Red) X(l + L)
(Near Infrared+Red+L)

MSAVI = 2NIR+1- V(2NIR+1)2—8(NIR—RED)

RGVI=1-

2

(Blue+Red)

(Nir+Swir 1+Swir 2)

These indices were selected because
they can represent vegetation conditions

while accounting for soil factors and varying
vegetation densities..
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Land Cover Classification

Land classification
performed wusing the Random Forest
algorithm on the GEE platform. The classes
used were settlement, open land, vegetation,
water bodies, rice fields, roads, and clouds.
Training areas were generated through

cover was

image interpretation to train the algorithm in
recognizing each class. Accuracy assessment
was conducted using a confusion matrix.
The calculated metrics included overall
accuracy (OA), wuser’s accuracy (UA),
producer’s accuracy (PA), and the kappa
coefficient (x), with the following formula:

Producer’sAccuracy = /Xit x 100%
Xi+

User’s Accuracy

Owerall Accuracy

Kappa(k)

Field Survey

The field survey was conducted for
two primary purposes: (1) validation of the
rice field classification results, and (2)
collecting rice productivity data through
interviews with farmers at the sample
points. The actual productivity data
obtained were subsequently used for
correlation  analysis and  regression
modeling.

rxy =

= \/X_iix 100%
X+i

= 57 xii x 100%

N

= Ny Xii-y! Xi+X+i

N 2-37 Xi+X+i

Pearson Correlation Analysis

Pearson correlation was employed to
examine the strength of the Ilinear
relationship between vegetation indices
(RGVI, SAVI, MSAVI) and rice productivity.
The Pearson correlation formula is
expressed as:

n yxi yi-(3xDH (Fyh)

V(n 3 x2-(Txi)2)(n 3 y2—(Tyi)2

The correlation coefficient (r) ranges from -1
to 1, where positive values indicate a direct
relationship and negative values indicate an
inverse relationship.

Multiple Linear Regression

The mathematical relationship
between vegetation indices and rice
productivity was modeled using multiple
linear regression, with the general equation
expressed as:

Y =00+ Pixit Poxat ...+ Prxcte
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Where Y represents rice productivity
(ton/ha), B0 is the constant, (31,2, and 3
are the regression coefficients, and e is the
error term. The analysis was conducted in
Google Colab using Python.

Classical Assumption Tests and Model
Feasibility

To ensure the validity of the regression
model, classical assumption tests were
performed, including:

1. Normality test: to examine whether
the residuals follow a normal
distribution.

2. Heteroscedasticity test: to assess
whether the residual variance is

constant.

3. Multicollinearity test: to check for
correlations among independent
variables.

In addition, model feasibility was evaluated
using:
1. F-test: to assess the significance of all

Rice Production Estimation Map

The regression model was applied to
Sentinel-2A imagery in GEE to generate a
rice production estimation map for Natar
and Jati Agung sub-districts. This map
serves as a spatial representation of the
productivity modeling results based on
vegetation indices.

RESULTS AND DISCUSSION
Relationship Between Vegetation Indices
and Productivity
1. Soil Adjusted Vegetation Index (SAVI)
The processing of Sentinel-2A
imagery shows that the Soil Adjusted
Vegetation Index (SAVI) can represent the
spatial distribution of vegetation density in
agricultural land within the study area.
SAVI was selected due to its ability to reduce
the influence of soil background reflectance,
particularly in areas with low to medium
vegetation cover, which are commonly

independent variables ~ found in rice fields during the early growth
simultaneously. stages.
2. T-test: to assess the significance of
each independent variable
individually.
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The spatial distribution of vegetation
density based on SAVI values is illustrated
in Figure 3. According to the classification
results, SAVI values are divided into five
categories: very low (-0.42-0.25), low (0.25-
0.42), moderate (0.42-0.57), high (0.57-0.70),
and very high (0.70-1.00). This classification
was applied to distinguish various
vegetation conditions, ranging from bare or
newly planted rice fields to rice fields in the
whole vegetative stage. The interval
thresholds were determined by referring to
standard ranges used in remote sensing of
rice crops, where values above 0.6 generally
correlate with the vegetative-generative
stages, when biomass accumulation and
photosynthesis rates are at their maximum.
Conversely, SAVI values below 0.4 typically
indicate the initial growth phase or fallow
land 2020). The
statistical distribution of SAVI provides a
quantitative overview of vegetation density
across the study area. This information is
crucial in linking spatial vegetation
conditions with rice yield potential, where
areas with high SAVI values are more likely
to produce greater yields than areas with
low SAVI values.

Frequency distribution of SAVI values
derived from all satellite image pixels within
the study area. The horizontal axis
represents the SAVI value range (-0.43 to
1.00), while the vertical axis shows the
number of pixels within each interval. The
results indicate that most SAVI values fall
within the range of 0.6 to 0.75, reflecting
areas with high vegetation density. The
distribution pattern exhibits a bimodal form,
with two peaks representing different land

(Rokhmatuloh et al,

cover conditions: areas in the early growth
stage and vegetative or generative stage.
Very low values observed in the histogram
are generally associated with non-vegetated
surfaces such as settlements, water bodies,
or cloud shadows during image acquisition.

Spatially, both sub-districts are
dominated by vegetation with density levels
ranging from moderate to high, which
signifies a substantial extent of agricultural
land, particularly rice fields and plantations.
However, some locations display red
patches, indicating very low vegetation
density. These areas can be interpreted as
settlements; nevertheless, most do not
necessarily reflect poor actual vegetation
conditions. Instead, some are influenced by
cloud cover or cloud shadows during the
satellite image acquisition, which reduces
vegetation index values compared to their
actual conditions.

2. MSAVI Index

The image processing using MSAVI
shows the spatial distribution of vegetation
density in the study area. MSAVI is
employed for its advantage in minimizing
soil background effects more effectively than
SAVI, particularly in locations with low
vegetation cover. This index applies a
calculation method that does not require
external correction parameters such as the L
value used in SAVI, making it more
responsive to variations in land conditions
(Qietal, 1994). The resulting MSAVI values
were then classified to represent different
levels of vegetation density. The vegetation
density map based on MSAVI can be seen in
Figure 4.
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Figure 4. MSAVI Vegetation Density Map (Source: Data Processing, 2025)

Based on Figure 4, the MSAVI values
were classified into five categories: very low
(-0.8 to -0.21), low (0.21-0.37), medium
(0.37-0.49), high (0.49-0.60), and very high
(0.60-0.80). This classification is adjusted to
the ranges commonly used in remote
sensing for vegetation, aiming to depict
variations in vegetation density more
accurately and responsively under complex
vegetation and soil background conditions.
MSAVI values below 0.4 generally indicate
built-up land cover, while values above 0.6
represent dense vegetation such as tropical
forests or cultivated farmland (Jensen, 2007).

Frequency distribution of MSAVI
values obtained from Sentinel-2 imagery in
the study area. The MSAVI values range
from approximately 0.49 to 0.92, with the
peak distribution occurring between 0.68
and 0.71, representing areas with dense and
actively growing vegetation cover. The
histogram displays a unimodal pattern, or a
single dominant peak, indicating that
MSAVI values are more stable in
representing dense vegetation cover. Low

values below 0.3 represent non-vegetated
areas such as settlements, open land, water
bodies, or the influence of clouds and
shadows during image acquisition. This
distribution pattern demonstrates that
MSAVI effectively reduces soil reflectance
effects and provides more consistent results
in agricultural areas with evenly distributed
vegetation.

Spatially, most of the two sub-districts
are dominated by light green to dark green
colors, indicating high to very high MSAVI
values. This reflects good vegetation cover,
representing agricultural or plantation land.
Meanwhile, some areas are dominated by
red, orange, and yellow colors, representing
very low to medium MSAVI values. These
correspond to built-up areas and open land.
The prevalence of red and orange regions in
Natar Sub-district is also influenced by
cloud cover during satellite image
acquisition, which reduces the accuracy of
vegetation spectral reflectance, causing
MSAVI values in those areas to appear lower
than their actual condition.

Spectral Transformation Analysis | 113



https:/ /jurnal.unimed.ac.id/2012/index.php/tgeo/article/ view /69041
https:/ /doi.org/10.24114/tgeo.v14i1.69041(Vol. 14 No. 1 - 2025)

e-ISSN: 2622-9528 p-ISSN: 2301-606X

3. RGVI Index
RGVI was used in this study to
monitor  vegetation = growth  phases,

particularly rice plants, based on the spectral
reflectance properties of the red band in
satellite imagery. RGVI has high sensitivity
to changes in greenness, making it effective
in monitoring crop growth stages in rice

fields (Sakamoto et al., 2005). This index can
capture spatial variations in vegetation
density, especially during active growing
periods. The processed RGVI values were
then classified to show the vegetation
distribution patterns in the study area. The
vegetation density map based on RGVI
values can be seen in Figure 5.
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Figure 5 RGVI Density Map (Source: Data Processing, 2025)

Based on Figure 5, the RGVI value
range is classified into five classes: very low
(-0.31-0.36), low (0.36-0.51), moderate (0.51-
0.60), high (0.60-0.66), and very high (0.66-
0.87). The classification aims to distinguish
the growth phases of rice plants. RGVI
values below 0.5 generally indicate the early
growth phase (pre-vegetative to early
vegetative). In contrast, values above 0.6 are
associated with the late vegetative and early
generative phases, where the plant canopy is
dense and chlorophyll is active (Graha &
Putra, 2022).

Frequency distribution of RGVI values
derived from Sentinel-2 imagery in the study
area. Most RGVI values fall within the range

of 0.6 to 0.75, with the highest peak around
0.68-0.70, indicating fields in the vegetative
to growth  phases. The
distribution pattern is unimodal and
narrow, suggesting that the study area is
dominated by fields with relatively similar
crop growth stages. Low values below 0.3
indicate empty fields, post-harvest areas, or
non-vegetative cover. This distribution
demonstrates  that RGVI effectively
identifies and maps rice growth phases
based on canopy greenness levels.

Spatially, most areas in the two sub-
districts are dominated by light green to
dark green colors, representing high to very
high RGVI values. This indicates good

generative
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vegetation cover, specifically areas of
agricultural land where rice crops are
growing well. In contrast, several points are
dominated by red, orange, and yellow
colors, indicating very low to medium RGVI
values. These represent rice fields that have
not yet been planted. The prevalence of red
and orange areas in Natar Sub-district is also
caused by cloud cover during image
acquisition, which interferes with accurately
recording vegetation reflectance, making
RGVI values appear lower than the actual
condition (Jensen, 2007).

Land Cover Classification

Land cover classification in Natar and
Jati Agung Sub-districts was done to
produce a land cover map and delineate rice
field boundaries. This study used these to
generate rice field shapefiles (shp) for spatial

analysis. The classification employed the
Random Forest algorithm, due to its strong
capability in handling multi-class datasets,
information imbalance, and inter-feature

relationships.
The land cover «classes in this
classification were divided into six

categories: vegetation, open land, rice fields,
settlements, built-up land, and water bodies.
The model was trained using 50 decision
trees (numberOfTrees: 50) and applied six
key spectral bands from Sentinel-2, namely
band 1, band 2, band 4, band 8, band 11, and
band 12. These bands were selected because
of their high sensitivity to land cover
variations, particularly in distinguishing
vegetation and open land (Immitzer et al,
2016). The land cover classification map can
be seen in Figure 6.
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Figure 6 Land Cover Classification Map (Source: Data Processing, 2025)

Based on Figure 6, the spatial
distribution of classes shows reasonably
good results. The western part of the study
area is dominated by natural vegetation,
while open land is scattered in the central

and eastern parts. Settlement and built-up
land classes are concentrated in the Natar
area, while water bodies are located on the
edges and in the center. The classification
results achieved an overall accuracy of
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85.62% and a kappa coefficient of 0.808.
These values indicate that the model
effectively identifies most land cover classes.
The resulting confusion matrix also shows
variation among the classes. Based on
Producer’s Accuracy, some classes, such as
water bodies, achieved 100%, indicating that
all test samples for this class were correctly
classified. However, the built-up land class
had the lowest Producer’s Accuracy (60%),
suggesting spectral overlap with other
courses such as settlements.

Regarding user accuracy, water bodies
again achieved perfect results (100%),
meaning no pixels from other classes were
misclassified as water. Rice fields had a
User’s Accuracy of 96%, reflecting high
precision in identifying this class.
Conversely, built-up land again showed the
lowest User’s Accuracy (60%), suggesting
possible visual and spectral overlap with
surrounding settlement areas.

Based on descriptive statistical
analysis of vegetation index values, the rice
field and natural vegetation classes had the
highest average values across all three
indices: MSAVI (rice fields: 0.574; natural
vegetation: 0.586), RGVI (rice fields: 0.663;
natural vegetation: 0.664), and SAVI (rice
fields: 0.611; natural vegetation: 0.629).
These values indicate that both classes
represent physiologically active vegetation
with high greenness levels. In contrast,
water bodies consistently showed the lowest
index values (SAVI: 0.299; RGVI: 0.457),
confirming the effectiveness of vegetation
indices in distinguishing vegetated and non-
vegetated land. Moreover, the relatively
small standard deviation values for natural
vegetation and rice fields suggest that pixel

values within these classes are relatively
homogeneous.

Field Survey

Using a  proportional random
sampling technique, a field survey was
conducted at 53 points, consisting of 35
points in Natar Sub-district and 18 points in
Jati Agung Sub-district. The distribution of
points was random but not entirely even
across the study area, as shown in Figure 7,
adjusted to the proportion of rice field
polygons relative to the total land cover
polygons in South Lampung Regency —the
survey aimed to validate agricultural land
classification results and collect rice
productivity information through direct
farmer interviews. The validation of rice
field classification showed fairly good
accuracy. Most sampled points
corresponded to the classified rice fields
from Sentinel-2 imagery. Some mismatches
between validation and classification results
occurred due to differences in timing
between imagery acquisition and field
surveys. Nevertheless, field validation
reinforced the classification results and
ensured accuracy in mapping rice fields as
the basis for productivity analysis.

The productivity data obtained were
then analyzed to determine their
relationship with vegetation indices (SAVI,
MSAVI, and RGVI). Subsequently, these
data were used for multiple linear regression
analysis to develop a rice productivity
prediction model based on remote sensing
data. This method has been proven effective
in previous studies for estimating
agricultural yields spatially (Thenkabail et
al., 2015).
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Pearson Correlation

Pearson correlation was wused to
examine the relationship between vegetation
indices and rice productivity. This study
used three vegetation indices, SAVI, MSAVI,
and RGVI, to measure plant vegetation's
density and condition. The relationship
between vegetation indices and productivity

can be seen in the scatter plot diagram in
Figure 8, which shows the correlation
between SAVI and productivity, Figure 9,
which shows the correlation between
MSAVI and productivity, and Figure 10,
which shows the correlation between RGVI
and productivity.

Correlation of SAVI with Productivity
r = 0.8708 (Korelasi kuat)

Productivity

0.4 0.5

0.‘6 0.7 0.8
SAVI

Figure 8 Correlation between SAVI and Productivity
(Source: Data Processing, 2025)
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Correlation of MSAVI with Productivity
r = 0.8526 (Korelasi kuat)

Productivity

0.40 0.45 0.50

0.55 0.60 0.65 0.70
MSAVI

Figure 9 Correlation between MSAVI and Productivity
(Source: Data Processing, 2025)

Correlation of RGVI with Productivity
r = 0.6675 (Korelasi sedang)

Productivity

0.62 0.64 0.66
RGVI

0.68 0.70 0.72

Figure 10 Correlation between RGVI and Productivity¥
(Source: Data Processing, 2025)

Based on Figure 8, which illustrates
the relationship between SAVI and
productivity, the data points are closely
clustered and follow a strong linear pattern.
This is consistent with the high correlation
value (r = 0.870), indicating that SAVI
effectively represents vegetation conditions.
Figure 9 shows the relationship between
MSAVI and productivity, with a correlation
value of r = 0.852. The data distribution

appears consistent along the regression line,
indicating a strong correlation between the
two variables. Meanwhile, Figure 10 shows
the relationship between RGVI and
productivity, with a correlation value of r =
0.667. Although the scatter plot indicates a
positive trend, the correlation strength is
relatively lower than the other two
vegetation indices.
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Based on these results, vegetation
indices — particularly SAVI and MSAVI—
are practical and efficient indicators for
monitoring and predicting agricultural
yields. This finding is consistent with the

demonstrated that the MSAVI vegetation
index effectively predicts rice productivity
of farm fields. The correlation coefficient (r)
and significance (p-value) for each index are
presented in Table 1.

study Putra et al (2021), which
Table 1. Index Correlation
Index r p_value Interpretation
SAVI 0.870 238 X107 Strong Correlation
MSAVI 0.852 5.46 X 1016 Strong Correlation
RGVI 0.667 4.79 X 10-%8 Moderate Correlation

(Source: Data Processing, 2025)

The results of the Pearson correlation
analysis presented in Table 1 show a positive
relationship between vegetation index
values and rice production. The SAVI index
recorded a Pearson correlation coefficient of
r = 0.870 with a p-value of 2.38 x 1077,
indicating a statistically strong and
significant correlation. Similarly, MSAVI
showed a strong relationship with r = 0.852
and a p-value of 546 x 1071, Meanwhile,
RGVI showed a moderate correlation with r
= 0.668 and a p-value of 4.79 x 1078. These
results indicate that the higher the
vegetation index values derived from
satellite imagery, the higher the agricultural
productivity in the study area.

These findings are consistent with
previous studies showing that vegetation
indices such as SAVI and MSAVI effectively
predict rice yield. This is because soil
brightness less influences vegetation signals,
making them more accurate in conditions
with sparse vegetation or visible soil.
Research has Xue & Su,(2017) demonstrated
that these indices measure photosynthetic
activity and canopy greenness, which are
directly related to crop production potential.

In addition, research Putra et al, (2021) in
Malang Regency found a strong correlation
between = MSAVI  values and rice
productivity (r = 0.83). This suggests that
MSAVI effectively describes rice growth
stages and productivity, owing to its ability
to reduce soil background effects. In this
study, vegetation indices such as SAVI,
MSAVI, and RGVI can effectively monitor
and predict agricultural productivity,
particularly rice, while accounting for
environmental conditions and land
characteristics.

B. Rice Production Estimation
Multiple Linear Regression

A multiple linear regression analysis
was conducted to examine the effect of
vegetation indices as independent variables
on rice productivity as the dependent
variable. This study used SAVI, MSAVI, and
RGVI as independent variables, while rice
productivity (tons/ha) served as the target
variable. The multiple linear regression
equation obtained in this study is as follows:

Produktivitas = 12,914+ 61,239(X1) -73,408(X2) - 3,620(X3)

Further information regarding
coefficient values, significance levels, and

model strength can be found in Table 2
below.
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Table 2 Multiple Linear Regression

variable R-Square Coefficient P-Value

Intercept 12,914 0,002
SAVI 0823 61,239 0,000

MSAVI ’ -73,408 0,000
RGVI -3,620 0,402

(Source: Data Processing, 2025)

Based on Table 2, the obtained p-value
of 0.000 (p < 0.05) indicates that the
regression model as a whole is valid and
statistically significant. The coefficient of
determination (R?) value of 0.823 shows that
the three indices can explain 82.3% of the
variation in rice productivity, while factors
outside the model explain the remainder.
The Adjusted R? value of 0.812 also indicates
that the model remains robust even
considering the number of independent
variables used.

Individually, SAVI shows a significant
positive effect on rice productivity, with a
coefficient of 61.239 and a p-value of 0.000.
Each one-unit increase in SAVI will increase
rice productivity by 61.239 tons/ha,
indicating a statistically strong positive
correlation between SAVI values and rice
yield. Conversely, the MSAVI index shows a
significant adverse effect on productivity,
with a coefficient of -73.408 and a p-value of
0.000. This suggests that increases in MSAVI
values are associated with a decrease in
yield, likely due to its sensitivity to soil
background effects. Meanwhile, the RGVI
index has a coefficient value of -3.620 with a
p-value of 0402, meaning it is not
statistically significant.

These findings are consistent with the
study Noureldin et al.(2013) in Sakha City,
which showed that a multiple linear
regression model using NDVI, SAVI, and

RGVI produced good yield predictions, with
SAVI contributing significantly. At the same
time, RGVI had a weaker predictive
influence. Another study by Christiawan &
Lai Nguyen.(2024) in Indonesia supports
this result, showing that SAVI had a high
coefficient of determination (R?) in rice yield
prediction models. Furthermore, Putra et al,
(2021)  research in Malang Regency
demonstrated that MSAVI had a coefficient
of determination of R? = 0.690. This study
highlights that MSAVI can still be effective
in predicting rice yields. These studies
reinforce that vegetation indices such as
SAVI and MSAVI can be reliable indicators
for modeling and predicting rice
productivity, while RGVI provides a
relatively weaker influence.

Figure 11 visualizes the multiple linear
regression results, which show a strong
relationship between actual productivity
and model predictions. Most
observed data points are evenly distributed
around the regression line, indicating high
predictive accuracy. The scatter pattern
closely following the regression line
demonstrates ~ a  significant  linear
relationship between the independent
variables used in the model and actual rice
productivity. This supports the validity of
the regression model developed in this
study.

values

Spectral Transformation Analysis | 120


https://jurnal.unimed.ac.id/2012/index.php/tgeo/article/view/69041
https://doi.org/10.24114/tgeo.v14i1.69041

Sijabat, ] et al (2025) Jurnal Tunas Geografi Vol. 14 No. 1 (2025)
Actual vs Predicted Productivity
(4]
8 -
(4]
A
-~ 0
-
-
274 - 8
2 -~
T g d
3 -
3 ;"
a g
T 6 D C 2l
g i <7
B -~
o (L] -
Q. ’/
5 -
I’,
-
-
- i
(&) ,”
-
44 ,a’
”
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Actual Productivity

Figure 11. Actual productivity and predictions (Source: Data Processing, 2025)

Classical Assumption Test

The classical assumption test in this
study was conducted using three main types
of tests, namely:
Normality Test

The normality test was conducted to
ensure that the residuals from the multiple
linear regression model had a normal
distribution. This is important because one
of the basic assumptions in classical
regression analysis indicates that errors

(residuals) must be normally distributed to
ensure that parameter estimates are
unbiased and efficient (Adjognon et al,
2017). This study conducted the normality
test using a descriptive statistical approach
(Z-skewness and Z-kurtosis) and two formal
tests, Jarque-Bera and Shapiro-Wilk. The
results of the normality test can be seen in
Table 3 below:

Table 3. Normality Test

Test Type Statistic Value P-value Interpretation
Z-skewness -0.887 - Normal (|Z| <1.96)

Z-kurtosis -0.583 - Normal (| Z| <1.96)
Jarque-Bera 1.128 0.568 Normal (p > 0.05)
Shapiro-Wilk 0.979 0.508 Normal (p > 0.05)

(Source: Data Processing, 2025)

Table 3 shows that the Z-skewness and
Z-kurtosis values are -0.887 and -0.583,
respectively, still within the range of +1.96.
This indicates that the residual data does not
experience  significant  deviation
distribution shape. In addition, the Jarque-
Bera test shows a p-value of 0.568, and the

in

Shapiro-Wilk test produces a p-value of
0.508. Since both p-values are > 0.05, it can be
concluded that the residual data is normally
distributed, which indicates that the
regression model satisfies one of the basic
assumptions of classical regression, namely
residual normality. These results are
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reinforced by the visualisation in Figure 12,
where the residual histogram (bottom left)
shows a pattern resembling a normal
distribution, the residual density plot
(bottom right) forms a symmetrical bell

curve, and the Q-Q Plot (top right) shows
points that follow the diagonal line, all of
which support the conclusion that the model
residuals are normally distributed.

Residuals vs Fitted Values
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Figure 12 Residual Normalitas (Source: Data Processing, 2025)

Heteroscedasticity Test

The heteroscedasticity test evaluates
whether the regression model's residual
variance remains constant. In multiple linear
regression, one of the assumptions that must
be met is homoscedasticity, which is a
condition where the residuals have uniform
variance across all predictor levels. If the

(heteroscedasticity), then Ordinary Least
Squares (OLS) estimation can become
inefficient even though it remains unbiased
(Wooldridge, 2015). This study conducted
the heteroscedasticity test using the Breusch-
Pagan and White tests. The results of the
Breusch-Pagan test are shown in Table 4
below:

residual variance is not constant
Table 4. Heteroscedasticity Test
Test Type LM LM-Test F-Statistic E-Test Interpretation
yp Statistic pretatio
Breusch- No heteroscedasticity
Pagan 7.531 0.056 2.705 0.055 (p > 0.05)
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White 14.17 0.116

1.743

No heteroscedasticity

0.108 (p > 0.05)

(Source: Data Processing, 2025)

Based on Table 4, it can be seen that the
Breusch-Pagan test results in a p-value of
0.056 for the LM-test and 0.055 for the F-test,
while White results in a p-value of 0.116 for
the LM-test and 0.108 for the F-test. Since the
results of both p-values are greater than 0.05,
the model satisfies the assumption of
homoscedasticity. Thus, this regression
model does not show symptoms of
heteroscedasticity, and the residuals are
considered to have constant variance.
Satisfying this assumption indicates that the
model estimation results are reliable
regarding error variance stability and
efficiency in measuring the relationship
between variables.

Multicollinearity Test

The multicollinearity test aims to
identify a powerful linear relationship
between independent variables (predictors)
in a regression model. If multicollinearity
occurs, the regression coefficient estimates
become inconsistent, the standard error
increases, and the understanding of the
relationship between each predictor and the
dependent variable becomes unreliable
(Wooldridge, 2015). The testing in this study
was conducted using the Variance Inflation
Factor (VIF) and additional regression
analysis, the results of which can be seen in
Tables 5 and 6 below.

Table 5 multicollinearity test

Variable VIF Interpretation
SAVI 3810.33 There is multicollinearity. (VIF > 10)
MSAVI 8252.3 There is multicollinearity. (VIF > 10)
RGVI 974.96 There is multicollinearity. (VIF > 10)

(Source: Data Processing, 2025)

Table 6 Additional Regression for Multicollinearity Testing

Variabel R2 F-value P-value
SAVI 0.996 6246.334 0

MSAVI 0.995 6029.478 0
RGVI 0.604 38.279 0

(Source: Data Processing, 2025)

Based on Tables 5 and 6, all
independent variables show very high VIF
values (far exceeding the tolerance limit of
10), indicating strong multicollinearity in
this regression model. This result is clarified
by the R? value > 0.99 in the additional
regression analysis for SAVI and MSAVI,
which shows that most of the variation in
one variable is explained by other
independent variables. Multicollinearity in

this study occurs due to the similarity of
spectral components used in calculating
vegetation indices. The three indices, SAVI,
MSAVI, and RGV], use a combination of NIR
and Red bands, which overlap. This causes
the values of the three indices to have a very
close linear relationship, because the basic
inputs for their calculation come from the
same source.
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Model Feasibility Test
The model feasibility test in this study was
conducted using two main tests, namely:

F Test
The F test was conducted to test the
overall significance of the model, namely, to

evaluate whether the independent variables
affected the dependent variable. In this
study, the dependent variable used was
productivity, ~while the independent
variables used were vegetation indices
consisting of SAVI, MSAVI, and RGVIL. The
results of the F test can be seen in Table 7
below:

Table 7. F Test

St?ésstlc Value P-Value Interpretation
FStatistik 76,080 0.000 Statistically significant regression model (p < 0.05), at

least one independent variable affects productivity

(Source: Data Processing, 2025)

Based on the results obtained in Table
7, the F-statistic value is 76.080 with a p-
value of 0.000. Because the p-value is smaller
than the significance level of 0.05, it can be
concluded that the regression model used
shows statistical significance. This indicates
that one of the SAVI, MSAVI, or RGVI
indices significantly affects productivity.
These results show that, overall, the
regression model can be used to explain
variations in productivity based on the three
vegetation indices.

T-test

The T-test was conducted to evaluate
the impact of each independent variable
individually on the dependent variable. In
this study, the dependent variable was
productivity, while the independent
variables consisted of three vegetation
indices, namely SAVI, MSAVI, and RGVL
The results of the T-test can be seen in Table
8 below.

Table 8. T Test

Variable t-hitung P-Value t-Table Interpretation
Konstanta (const) 3,223 0,002 12,0096 Significant (p < 0.05)
SAVI 5,140 0,0000 +2,0097 Significant (p < 0.05)
MSAVI -4,242 0,0001 +2,0098 Significant (p < 0.05)
RGVI -0,844 0,402 +2,0099 Not Significant (p = 0.05)

(Source: Data Processing, 2025)

Based on the results obtained in Table
8, the t-count value for each variable is
compared with the t-table of £2.0096 at a
significance level of 5%. If the t-count value
exceeds the t-table in absolute terms and the
p-value is < 0.05, then the variable affects
productivity significantly. The analysis
results show that the SAVI variable has a t-
value of 5.140 (p-value = 0.0000) and MSAVI
of -4.242 (p-value = 0.0001), which show a
statistically ~significant effect. However,

MSAVI is having an adverse impact.
Meanwhile, the RGVI variable has a t-value
of -0.844 with a p-value of 0.402, which does
not meet the significance criteria. Therefore,
it can be concluded that in the study area,
only the SAVI and MSAVI variables
contribute significantly to the variation in
rice productivity in the model, while RGVI
has no significant effect.

In addition to F and T testing, this
regression model was also tested using
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additional metric models, which yielded an
R-squared value of 0.823 and an Adjusted R-
squared value of 0.812, indicating that
approximately 81.2% of the variation in
productivity can be explained by the
vegetation index variables in this model.
This demonstrates fairly good predictive
ability. The model error metrics also showed
reasonably good results, with a Mean
Squared Error (MSE) value of 0.207, a Root
Mean Squared Error (RMSE) of 0.455, and a
Mean Absolute Error (MAE) of 0.365. These
results indicate that the model has a
relatively low level of prediction error, so it

can be used to estimate productivity based
on vegetation indices.

Rice Production Estimation Map

Rice production estimation was
carried out to analyse the actual productivity
values and the prediction results from the
model. This comparison is critical to see how
accurate the prediction model estimates are
compared to the exact conditions in the field.
These productivity estimation results were
calculated using the regression equation
obtained, which can be seen in Figure 13.
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Figure 13. productivity estimation map (Source: Data Processing, 2025)

Based on Figure 13, the estimation of
rice productivity in South Lampung
Regency is divided into three classes: green
for high productivity, yellow for medium
productivity, and red for low productivity.
The results show that Natar Sub-district is
predominantly represented by yellow. This
indicates that the area has moderate
productivity. However, this  yellow
dominance may not fully reflect the actual
productivity conditions in the field. One
factor contributing to this is cloud cover

during satellite image acquisition, which
prevents the sensor from accurately
recording the spectral reflectance of
vegetation. The presence of clouds can
reduce the vegetation index values obtained
(such as SAVI, MSAVI, and RGVI), thereby
affecting the productivity estimates
generated by the prediction model. As a
result, areas that should have high
productivity may be classified as medium or
even low. Another influencing factor is
water availability, which can affect rice
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productivity levels in this area. Since
irrigation systems do not fully cover the
region, some parts of Natar Sub-district
depend on seasonal rainfall. Instability in
water supply, especially during critical
growth stages such as maximum tillering
and panicle initiation, can significantly
reduce yields. Crops experiencing water
stress during these phases usually develop
sub-optimally, influencing productivity
estimates derived from vegetation index-
based models.

Meanwhile, Jati Agung Sub-district
shows a more varied color pattern,
combining yellow and green. This pattern
reflects a relatively heterogeneous level of
productivity, which may be influenced by
factors such as soil characteristics, irrigation
availability, cultivation methods, and the
rice varieties planted. These results indicate
that while the region has high productivity
potential in some areas, others still require
intervention to improve yields.

This study, which applied satellite
imagery and vegetation indices to estimate
rice productivity, contributes significantly to
developing data-driven agricultural
monitoring systems. The use of Sentinel-2A
imagery together with MSAVI, SAVI, and
RGVI indices has proven effective in
providing broad and efficient spatial
information, thereby supporting
comprehensive mapping and evaluation of
agricultural conditions. Remote sensing
technology enables productivity estimation
without  direct field measurements,
significantly saving time, labor, and costs,
particularly in large or hard-to-reach
agricultural areas. The findings of this
research also hold potential for use by
government agencies, especially in the
agricultural sector, as a data-based
foundation for policy formulation. Thus, this
approach can support more efficient land
management efforts and strengthen
sustainable food security strategies.

This study hypothesized that the
vegetation indices MSAVI, SAVI, and RGVI
are strongly related to rice productivity.
Based on the results of multiple linear
regression analysis, the coefficient of

determination (R?) obtained was 0.823,
meaning that about 82.3% of the variation in
rice productivity can be explained by these
three indices. The F-test also showed that the
regression model is statistically significant.
Therefore, the hypothesis of this study is
accepted. The three vegetation indices were
proven to have a strong relationship with
rice productivity. They can be used to
develop a rice yield estimation model based
on Sentinel-2A imagery in Natar and Jati
Agung Sub-districts. Nevertheless,
interpretation of the results must still
consider external factors such as cloud cover
and water availability to avoid potential bias
in analysis and in developing spatially based
agricultural policies.

CONCLUSION

The results of this study demonstrate
that vegetation indices, particularly SAVI
and MSAVI, have a significant relationship
with rice productivity in Natar and Jati
Agung Sub-districts, making them more
representative than RGVI in describing the
link between vegetation and productivity.
The multiple linear regression model based
on Sentinel-2A imagery provided high-
accuracy productivity estimates, as shown
by the strong coefficient of determination (R2
= (.823) and statistically significant model
testing.  Nevertheless, indications of
multicollinearity and the influence of
external factors such as rice varieties,
irrigation systems, and soil conditions
remain limitations that need to be
addressed. Therefore, integrating remote
sensing with field data can be considered an
effective approach for rice productivity
mapping, but further refinement of the
model by including additional agronomic
variables and applying more advanced
analytical methods is recommended to
improve accuracy in future research.
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