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Abstract 
Rice (Oryza sativa) is a key food commodity in Indonesia and plays a crucial role in 
ensuring national food security. South Lampung Regency, particularly Natar and Jati 
Agung Sub-districts, significantly contributes to rice production in the province. 
However, conventional rice yield estimation methods face limitations in terms of time, 
labor, and cost. This study aims to analyze the relationship between vegetation 
indices—Modified Soil Adjusted Vegetation Index (MSAVI), Soil Adjusted Vegetation 
Index (SAVI), and Rice Growth Vegetation Index (RGVI)—and rice productivity, as 
well as estimate rice yield using Sentinel-2A imagery in the study area. Data used 
include 2024 Sentinel-2A imagery and productivity measurements from 53 field 
observation points. The methods involve image classification, vegetation index 
calculation (SAVI, MSAVI, RGVI), Pearson correlation analysis, and yield estimation 
using multiple linear regression. The correlation results show r values of 0.870 (SAVI), 
0.852 (MSAVI), and 0.667 (RGVI). The regression model yields an R² of 0.823 and an 
adjusted R² of 0.812. Yield estimates were classified into three categories: low (3.39–4.76 
tons/ha), medium (4.76–6.13 tons/ha), and high (>6.13 tons/ha). This study 
demonstrates that remote sensing has strong potential to support sustainable 
agricultural practices and accurate, continuous rice yield estimation. 
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INTRODUCTION 

Rice (Oryza sativa) is one of 
Indonesia's most important cultivated crops, 
producing rice that serves as the staple food 
for most of the population (Rahaldi et al., 
2013; Graha et al, 2022). The importance of 
rice can be seen from its contribution to 
national food security, where the availability 
of rice becomes a strategic indicator to assess 
the stability of a country (IRRI, 2007). One of 
the challenges in rice cultivation is the 
uncertainty of yields, which can reduce food 
security levels (Hakim et al, 2024).  

To address this, Law No. 41 of 2009 on 
the Protection of Sustainable Food 
Agricultural Land mandates the availability 
of sustainably protected agricultural land to 
ensure food security, create employment, 
and achieve equitable welfare. This policy 
aligns with the principles of agrarian reform, 
which emphasize the sustainable utilization 
of agricultural resources. Such protection is 
needed across all regions, given that 

agriculture is one of the main pillars of the 
national economy (Putri et al, 2022). 

Lampung Province is one of the rice 
production centers in Indonesia. Data from 
Statistics Indonesia (BPS) in 2023 shows that 
the agricultural sector contributed 27.29% to 
the province's economy. South Lampung 
Regency is one of the key rice production 
areas, with a total rice field area of 38,688 
hectares spread across 17 districts. Natar and 
Jati Agung Sub-districts have significant rice 
cultivation activities, with a total production 
of 62,447.42 tons of dry harvested rice in 2022 
(BPS, 2024). This considerable contribution 
highlights the importance of rice yield 
estimation to ensure food availability and 
support sustainable agricultural planning 
(Genc, 2014; Kania, 2010). 

Rice production estimation has been 
widely carried out by government agencies 
such as BULOG, BPS, the Directorate 
General of Food Crop Production and 
Horticulture, and local Agricultural Offices 
(Graha et al, 2022). However, most methods 
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are still conventional, requiring long 
processing times, considerable labor input, 
and high costs. They are also limited to 
harvest periods without monitoring the crop 
growth phases (Said, 2015; Kusmana, 2003). 
With technological advances, remote 
sensing has emerged as an alternative for 
more efficient rice crop monitoring. 

Remote sensing technology enables 
periodic monitoring with wide coverage and 
efficient spatial analysis. Sentinel-2A 
imagery is widely used due to its high 
spatial, temporal, and spectral resolution, 
offering 13 spectral bands: 4 bands at 10 m, 
six bands at 20 m, and three bands at 60 m, 
with a swath width of 290 km (Alit et al., 
2021). To optimize image processing, Google 
Earth Engine (GEE), a cloud-based 
geospatial computing platform, is used for 
large-scale and efficient data processing 
(Gorelick et al., 2017). 

Research has been conducted using 
remote sensing and vegetation indices to 
monitor rice growth and estimate yields. 
Rokhmatuloh et al. (2020) showed that the 
Normalized Difference Vegetation Index 
(NDVI) from Sentinel-2A imagery 
effectively estimated yield. Ariani et al. 
(2020) found NDVI results to be closest to 
field data compared to EVI and SAVI. 
Sudarsono et al. (2016) also concluded that 
NDVI was the best for growth stage analysis, 
while Putra et al. (2018) showed that NDVI-
based yield estimation models are highly 
suitable. However, NDVI has limitations, 
such as saturation in dense canopy areas and 
sensitivity to atmospheric and soil 
background variations (Sari et al., 2015). 

The Soil Adjusted Vegetation Index 
(SAVI) was developed to overcome these 
limitations. SAVI introduces a soil 
brightness correction factor (L) to reduce soil 
background reflectance effects, making it 
more accurate for areas with sparse 
vegetation or exposed soil. The Modified 
Soil Adjusted Vegetation Index (MSAVI) 
was later introduced to optimize SAVI 

without manual L-value determination, 
offering automatic correction for soil 
background effects. MSAVI is highly 
effective in agricultural systems with high 
soil variability or open field cycles (Sari et al., 
2015). Meanwhile, the Rice Growth 
Vegetation Index (RGVI) has been 
developed to capture better rice-specific 
growth parameters (Graha et al., 2022). 
Based on these considerations, this study 
aims to analyze the relationship between 
MSAVI, SAVI, and RGVI indices and rice 
productivity and estimate rice yields using 
Sentinel-2A imagery in Natar and Jati 
Agung Sub-districts. 
 
RESEARCH METHODS 

This research will be conducted in Jati 
Agung and Natar Sub-districts, South 
Lampung Regency. Astronomically, these 
sub-districts are located between 105°10’7” 
to 105°27’9” East Longitude and 5°3’51” to 
5°26’33” South Latitude. Jati Agung and 
Natar have extensive agricultural land 
distributed across various irrigation 
systems, ranging from technical irrigation to 
rainfed rice fields. The area’s topography is 
predominantly low to moderate plains, with 
diverse irrigation systems. This situation 
provides opportunities for in-depth research 
on crop density across different land types 
and irrigation systems. 

Generally, rice yields in Jati Agung 
and Natar vary considerably, depending on 
water availability, cultivation techniques, 
and local agroecosystem conditions. Some 
areas with well-managed technical irrigation 
systems can produce high yields, whereas 
yields tend to fluctuate in rainfed areas. 
Farmers’ capacity also influences these 
differences in land management, the use of 
superior varieties, and fertilization intensity. 
Therefore, these sub-districts provide ideal 
conditions for observing and comparing the 
influence of environmental variations and 
farming practices on yield estimation. The 
location map is shown in Figure 1. 
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Figure 1. Research Location (Source: Data Processing, 2025) 
 

 

Figure 2 Research Stage (Source: Data Processing, 2025) 
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Tools and Materials 
The tools and materials used for this 

research are as follows: 
1. Sentinel 2A imagery 
2. Rice field shapefile (classification results) 
3. Interview survey data 
4. Subdistrict administrative boundary 
shapefile 
5. Google Earth Engine 
6. Google Colab 
7. Avenza 
 
Data Collection 

 This study collected two types of data: 
primary and secondary. The secondary data 
used is Sentinel-2A imagery recorded in 
2024. The primary data required for this 
study were rice production data obtained 
through field observations. Data collection 
was carried out in the sub-districts of Natar 
and Jati Agung. This primary data included 
information on actual production yields at 
each observation point. 
 
Implementation Stage 
The series of steps in this study is presented 
in a flowchart.  
 
Data Pre-processing           

The pre-processing stage was carried 
out to prepare Sentinel-2A imagery before 

analysis. The dataset employed was 
Sentinel-2A Level-2A (surface reflectance), 
obtained from the Google Earth Engine 
(GEE) platform. This imagery had already 
undergone geometric and radiometric 
corrections by ESA; therefore, no additional 
geometric accuracy assessment or 
radiometric correction was required. 
Subsequently, the imagery was clipped 
using the administrative boundaries of 
Natar and Jati Agung sub-districts in 
shapefile (.shp) format. This clipping process 
aimed to restrict the analysis area to the 
study region, thereby ensuring efficiency 
and focus. 
 
Data Processing 

The data processing stage included 
calculating vegetation indices, land use 
classification, field surveys, statistical 
analysis, and the development of production 
estimation maps. 
 
Vegetation Index Transformation 

Vegetation indices were calculated to 
extract vegetation density information from 
multispectral imagery. The index used 
included RGVI, SAVI, and MSAVI, with the 
following formulas: 

 

SAVI = ("#$%	'()%$%#*+,#*)
("#$%	'()%$%#*.,#*./)

	𝑋	(1	 + 	𝐿) 

 

MSAVI = 0"',.1+	√(0"',.1)!+3("',+,45)
0

 

 

RGVI = 1 - (678#.,#*)
("9%.:;9%	1.:;9%	0)

 

 
These indices were selected because 

they can represent vegetation conditions 
while accounting for soil factors and varying 
vegetation densities.. 
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Land Cover Classification 
Land cover classification was 

performed using the Random Forest 
algorithm on the GEE platform. The classes 
used were settlement, open land, vegetation, 
water bodies, rice fields, roads, and clouds. 
Training areas were generated through 

image interpretation to train the algorithm in 
recognizing each class. Accuracy assessment 
was conducted using a confusion matrix. 
The calculated metrics included overall 
accuracy (OA), user’s accuracy (UA), 
producer’s accuracy (PA), and the kappa 
coefficient (κ), with the following formula: 

 

Producer’sAccuracy = √<99
<9.

 x 100% 

 

User’s Accuracy = √<99
<.9

 x 100% 

 

Overall Accuracy = √∑"	
$ 	<99
"

 x 100% 

 

Kappa(k) = "	∑"	$ 	<99+∑"	$ 			<9.<.9
			"						!+	∑"	

$ 		<9.<.9
 

 
Field Survey 

The field survey was conducted for 
two primary purposes: (1) validation of the 
rice field classification results, and (2) 
collecting rice productivity data through 
interviews with farmers at the sample 
points. The actual productivity data 
obtained were subsequently used for 
correlation analysis and regression 
modeling. 

 
Pearson Correlation Analysis 

Pearson correlation was employed to 
examine the strength of the linear 
relationship between vegetation indices 
(RGVI, SAVI, MSAVI) and rice productivity. 
The Pearson correlation formula is 
expressed as: 

 
rxy  = >	∑?@	A@+(∑?@)(∑A@)

√(>	∑	?0+(∑?@)0)(>	∑	A0+(∑A@)0		
 

 
The correlation coefficient (r) ranges from -1 
to 1, where positive values indicate a direct 
relationship and negative values indicate an 
inverse relationship. 
 
 

Multiple Linear Regression 
The mathematical relationship 

between vegetation indices and rice 
productivity was modeled using multiple 
linear regression, with the general equation 
expressed as: 

 

Y = β0 + β1 x1 + β2x2 + ….+ βk xk + e 
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Where Y represents rice productivity 
(ton/ha), β0 is the constant,  β1,β2, and β3 
are the regression coefficients, and e is the 
error term. The analysis was conducted in 
Google Colab using Python. 
 
Classical Assumption Tests and Model 
Feasibility 

To ensure the validity of the regression 
model, classical assumption tests were 
performed, including: 

1. Normality test: to examine whether 
the residuals follow a normal 
distribution. 

2. Heteroscedasticity test: to assess 
whether the residual variance is 
constant. 

3. Multicollinearity test: to check for 
correlations among independent 
variables. 

In addition, model feasibility was evaluated 
using: 

1. F-test: to assess the significance of all 
independent variables 
simultaneously. 

2. T-test: to assess the significance of 
each independent variable 
individually. 

 
Rice Production Estimation Map 

The regression model was applied to 
Sentinel-2A imagery in GEE to generate a 
rice production estimation map for Natar 
and Jati Agung sub-districts. This map 
serves as a spatial representation of the 
productivity modeling results based on 
vegetation indices. 
 
RESULTS AND DISCUSSION 
Relationship Between Vegetation Indices 
and Productivity 
1. Soil Adjusted Vegetation Index (SAVI) 

The processing of Sentinel-2A 
imagery shows that the Soil Adjusted 
Vegetation Index (SAVI) can represent the 
spatial distribution of vegetation density in 
agricultural land within the study area. 
SAVI was selected due to its ability to reduce 
the influence of soil background reflectance, 
particularly in areas with low to medium 
vegetation cover, which are commonly 
found in rice fields during the early growth 
stages. 

 
 

Figure 3 SAVI Vegetation Density Map (Source: Data Processing, 2025) 
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The spatial distribution of vegetation 
density based on SAVI values is illustrated 
in Figure 3. According to the classification 
results, SAVI values are divided into five 
categories: very low (–0.42–0.25), low (0.25–
0.42), moderate (0.42–0.57), high (0.57–0.70), 
and very high (0.70–1.00). This classification 
was applied to distinguish various 
vegetation conditions, ranging from bare or 
newly planted rice fields to rice fields in the 
whole vegetative stage. The interval 
thresholds were determined by referring to 
standard ranges used in remote sensing of 
rice crops, where values above 0.6 generally 
correlate with the vegetative–generative 
stages, when biomass accumulation and 
photosynthesis rates are at their maximum. 
Conversely, SAVI values below 0.4 typically 
indicate the initial growth phase or fallow 
land (Rokhmatuloh et al., 2020). The 
statistical distribution of SAVI provides a 
quantitative overview of vegetation density 
across the study area. This information is 
crucial in linking spatial vegetation 
conditions with rice yield potential, where 
areas with high SAVI values are more likely 
to produce greater yields than areas with 
low SAVI values. 

Frequency distribution of SAVI values 
derived from all satellite image pixels within 
the study area. The horizontal axis 
represents the SAVI value range (–0.43 to 
1.00), while the vertical axis shows the 
number of pixels within each interval. The 
results indicate that most SAVI values fall 
within the range of 0.6 to 0.75, reflecting 
areas with high vegetation density. The 
distribution pattern exhibits a bimodal form, 
with two peaks representing different land 

cover conditions: areas in the early growth 
stage and vegetative or generative stage. 
Very low values observed in the histogram 
are generally associated with non-vegetated 
surfaces such as settlements, water bodies, 
or cloud shadows during image acquisition. 

Spatially, both sub-districts are 
dominated by vegetation with density levels 
ranging from moderate to high, which 
signifies a substantial extent of agricultural 
land, particularly rice fields and plantations. 
However, some locations display red 
patches, indicating very low vegetation 
density. These areas can be interpreted as 
settlements; nevertheless, most do not 
necessarily reflect poor actual vegetation 
conditions. Instead, some are influenced by 
cloud cover or cloud shadows during the 
satellite image acquisition, which reduces 
vegetation index values compared to their 
actual conditions. 
 
2. MSAVI Index 

The image processing using MSAVI 
shows the spatial distribution of vegetation 
density in the study area. MSAVI is 
employed for its advantage in minimizing 
soil background effects more effectively than 
SAVI, particularly in locations with low 
vegetation cover. This index applies a 
calculation method that does not require 
external correction parameters such as the L 
value used in SAVI, making it more 
responsive to variations in land conditions 
(Qi et al., 1994). The resulting MSAVI values 
were then classified to represent different 
levels of vegetation density. The vegetation 
density map based on MSAVI can be seen in 
Figure 4. 
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Figure 4. MSAVI Vegetation Density Map (Source: Data Processing, 2025) 
 
Based on Figure 4, the MSAVI values 

were classified into five categories: very low 
(–0.8 to –0.21), low (0.21–0.37), medium 
(0.37–0.49), high (0.49–0.60), and very high 
(0.60–0.80). This classification is adjusted to 
the ranges commonly used in remote 
sensing for vegetation, aiming to depict 
variations in vegetation density more 
accurately and responsively under complex 
vegetation and soil background conditions. 
MSAVI values below 0.4 generally indicate 
built-up land cover, while values above 0.6 
represent dense vegetation such as tropical 
forests or cultivated farmland (Jensen, 2007). 

Frequency distribution of MSAVI 
values obtained from Sentinel-2 imagery in 
the study area. The MSAVI values range 
from approximately 0.49 to 0.92, with the 
peak distribution occurring between 0.68 
and 0.71, representing areas with dense and 
actively growing vegetation cover. The 
histogram displays a unimodal pattern, or a 
single dominant peak, indicating that 
MSAVI values are more stable in 
representing dense vegetation cover. Low 

values below 0.3 represent non-vegetated 
areas such as settlements, open land, water 
bodies, or the influence of clouds and 
shadows during image acquisition. This 
distribution pattern demonstrates that 
MSAVI effectively reduces soil reflectance 
effects and provides more consistent results 
in agricultural areas with evenly distributed 
vegetation. 

Spatially, most of the two sub-districts 
are dominated by light green to dark green 
colors, indicating high to very high MSAVI 
values. This reflects good vegetation cover, 
representing agricultural or plantation land. 
Meanwhile, some areas are dominated by 
red, orange, and yellow colors, representing 
very low to medium MSAVI values. These 
correspond to built-up areas and open land. 
The prevalence of red and orange regions in 
Natar Sub-district is also influenced by 
cloud cover during satellite image 
acquisition, which reduces the accuracy of 
vegetation spectral reflectance, causing 
MSAVI values in those areas to appear lower 
than their actual condition. 
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3. RGVI Index 
RGVI was used in this study to 

monitor vegetation growth phases, 
particularly rice plants, based on the spectral 
reflectance properties of the red band in 
satellite imagery. RGVI has high sensitivity 
to changes in greenness, making it effective 
in monitoring crop growth stages in rice 

fields (Sakamoto et al., 2005). This index can 
capture spatial variations in vegetation 
density, especially during active growing 
periods. The processed RGVI values were 
then classified to show the vegetation 
distribution patterns in the study area. The 
vegetation density map based on RGVI 
values can be seen in Figure 5. 

 
 

Figure 5 RGVI Density Map (Source: Data Processing, 2025) 
           

Based on Figure 5, the RGVI value 
range is classified into five classes: very low 
(-0.31-0.36), low (0.36-0.51), moderate (0.51-
0.60), high (0.60-0.66), and very high (0.66-
0.87). The classification aims to distinguish 
the growth phases of rice plants. RGVI 
values below 0.5 generally indicate the early 
growth phase (pre-vegetative to early 
vegetative). In contrast, values above 0.6 are 
associated with the late vegetative and early 
generative phases, where the plant canopy is 
dense and chlorophyll is active (Graha & 
Putra, 2022). 

Frequency distribution of RGVI values 
derived from Sentinel-2 imagery in the study 
area. Most RGVI values fall within the range 

of 0.6 to 0.75, with the highest peak around 
0.68–0.70, indicating fields in the vegetative 
to generative growth phases. The 
distribution pattern is unimodal and 
narrow, suggesting that the study area is 
dominated by fields with relatively similar 
crop growth stages. Low values below 0.3 
indicate empty fields, post-harvest areas, or 
non-vegetative cover. This distribution 
demonstrates that RGVI effectively 
identifies and maps rice growth phases 
based on canopy greenness levels. 

Spatially, most areas in the two sub-
districts are dominated by light green to 
dark green colors, representing high to very 
high RGVI values. This indicates good 
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vegetation cover, specifically areas of 
agricultural land where rice crops are 
growing well. In contrast, several points are 
dominated by red, orange, and yellow 
colors, indicating very low to medium RGVI 
values. These represent rice fields that have 
not yet been planted. The prevalence of red 
and orange areas in Natar Sub-district is also 
caused by cloud cover during image 
acquisition, which interferes with accurately 
recording vegetation reflectance, making 
RGVI values appear lower than the actual 
condition (Jensen, 2007). 
 
Land Cover Classification 

Land cover classification in Natar and 
Jati Agung Sub-districts was done to 
produce a land cover map and delineate rice 
field boundaries. This study used these to 
generate rice field shapefiles (shp) for spatial 

analysis. The classification employed the 
Random Forest algorithm, due to its strong 
capability in handling multi-class datasets, 
information imbalance, and inter-feature 
relationships. 

The land cover classes in this 
classification were divided into six 
categories: vegetation, open land, rice fields, 
settlements, built-up land, and water bodies. 
The model was trained using 50 decision 
trees (numberOfTrees: 50) and applied six 
key spectral bands from Sentinel-2, namely 
band 1, band 2, band 4, band 8, band 11, and 
band 12. These bands were selected because 
of their high sensitivity to land cover 
variations, particularly in distinguishing 
vegetation and open land (Immitzer et al., 
2016). The land cover classification map can 
be seen in Figure 6. 

 
 

Figure 6 Land Cover Classification Map (Source: Data Processing, 2025) 
 

Based on Figure 6, the spatial 
distribution of classes shows reasonably 
good results. The western part of the study 
area is dominated by natural vegetation, 
while open land is scattered in the central 

and eastern parts. Settlement and built-up 
land classes are concentrated in the Natar 
area, while water bodies are located on the 
edges and in the center. The classification 
results achieved an overall accuracy of 
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85.62% and a kappa coefficient of 0.808. 
These values indicate that the model 
effectively identifies most land cover classes. 
The resulting confusion matrix also shows 
variation among the classes. Based on 
Producer’s Accuracy, some classes, such as 
water bodies, achieved 100%, indicating that 
all test samples for this class were correctly 
classified. However, the built-up land class 
had the lowest Producer’s Accuracy (60%), 
suggesting spectral overlap with other 
courses such as settlements. 

Regarding user accuracy, water bodies 
again achieved perfect results (100%), 
meaning no pixels from other classes were 
misclassified as water. Rice fields had a 
User’s Accuracy of 96%, reflecting high 
precision in identifying this class. 
Conversely, built-up land again showed the 
lowest User’s Accuracy (60%), suggesting 
possible visual and spectral overlap with 
surrounding settlement areas. 

Based on descriptive statistical 
analysis of vegetation index values, the rice 
field and natural vegetation classes had the 
highest average values across all three 
indices: MSAVI (rice fields: 0.574; natural 
vegetation: 0.586), RGVI (rice fields: 0.663; 
natural vegetation: 0.664), and SAVI (rice 
fields: 0.611; natural vegetation: 0.629). 
These values indicate that both classes 
represent physiologically active vegetation 
with high greenness levels. In contrast, 
water bodies consistently showed the lowest 
index values (SAVI: 0.299; RGVI: 0.457), 
confirming the effectiveness of vegetation 
indices in distinguishing vegetated and non-
vegetated land. Moreover, the relatively 
small standard deviation values for natural 
vegetation and rice fields suggest that pixel 

values within these classes are relatively 
homogeneous. 
 
Field Survey 

Using a proportional random 
sampling technique, a field survey was 
conducted at 53 points, consisting of 35 
points in Natar Sub-district and 18 points in 
Jati Agung Sub-district. The distribution of 
points was random but not entirely even 
across the study area, as shown in Figure 7, 
adjusted to the proportion of rice field 
polygons relative to the total land cover 
polygons in South Lampung Regency—the 
survey aimed to validate agricultural land 
classification results and collect rice 
productivity information through direct 
farmer interviews. The validation of rice 
field classification showed fairly good 
accuracy. Most sampled points 
corresponded to the classified rice fields 
from Sentinel-2 imagery. Some mismatches 
between validation and classification results 
occurred due to differences in timing 
between imagery acquisition and field 
surveys. Nevertheless, field validation 
reinforced the classification results and 
ensured accuracy in mapping rice fields as 
the basis for productivity analysis. 

The productivity data obtained were 
then analyzed to determine their 
relationship with vegetation indices (SAVI, 
MSAVI, and RGVI). Subsequently, these 
data were used for multiple linear regression 
analysis to develop a rice productivity 
prediction model based on remote sensing 
data. This method has been proven effective 
in previous studies for estimating 
agricultural yields spatially (Thenkabail et 
al., 2015). 
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Figure 7 Map of Sample Point Distribution (Source: Data Processing, 2025) 

 
Pearson Correlation 

Pearson correlation was used to 
examine the relationship between vegetation 
indices and rice productivity. This study 
used three vegetation indices, SAVI, MSAVI, 
and RGVI, to measure plant vegetation's 
density and condition. The relationship 
between vegetation indices and productivity 

can be seen in the scatter plot diagram in 
Figure 8, which shows the correlation 
between SAVI and productivity, Figure 9, 
which shows the correlation between 
MSAVI and productivity, and Figure 10, 
which shows the correlation between RGVI 
and productivity. 

 
 

Figure 8 Correlation between SAVI and Productivity 
(Source: Data Processing, 2025) 
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Figure 9 Correlation between MSAVI and Productivity 
(Source: Data Processing, 2025) 

 
 

Figure 10 Correlation between RGVI and Productivity¥ 
(Source: Data Processing, 2025) 

             
 Based on Figure 8, which illustrates 

the relationship between SAVI and 
productivity, the data points are closely 
clustered and follow a strong linear pattern. 
This is consistent with the high correlation 
value (r = 0.870), indicating that SAVI 
effectively represents vegetation conditions. 
Figure 9 shows the relationship between 
MSAVI and productivity, with a correlation 
value of r = 0.852. The data distribution 

appears consistent along the regression line, 
indicating a strong correlation between the 
two variables. Meanwhile, Figure 10 shows 
the relationship between RGVI and 
productivity, with a correlation value of r = 
0.667. Although the scatter plot indicates a 
positive trend, the correlation strength is 
relatively lower than the other two 
vegetation indices. 
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Based on these results, vegetation 
indices—particularly SAVI and MSAVI—
are practical and efficient indicators for 
monitoring and predicting agricultural 
yields. This finding is consistent with the 
study Putra et al .(2021), which 

demonstrated that the MSAVI vegetation 
index effectively predicts rice productivity 
of farm fields. The correlation coefficient (r) 
and significance (p-value) for each index are 
presented in Table 1. 

 
Table 1. Index Correlation 

Index r p_value Interpretation 
SAVI 0.870 2.38 X 10-17 Strong Correlation 

MSAVI 0.852 5.46 X 10-16 Strong Correlation 
RGVI 0.667 4.79 X 10-08 Moderate Correlation 

(Source: Data Processing, 2025) 
 

The results of the Pearson correlation 
analysis presented in Table 1 show a positive 
relationship between vegetation index 
values and rice production. The SAVI index 
recorded a Pearson correlation coefficient of 
r = 0.870 with a p-value of 2.38 × 10⁻¹⁷, 
indicating a statistically strong and 
significant correlation. Similarly, MSAVI 
showed a strong relationship with r = 0.852 
and a p-value of 5.46 × 10⁻¹⁶. Meanwhile, 
RGVI showed a moderate correlation with r 
= 0.668 and a p-value of 4.79 × 10⁻⁸. These 
results indicate that the higher the 
vegetation index values derived from 
satellite imagery, the higher the agricultural 
productivity in the study area. 

These findings are consistent with 
previous studies showing that vegetation 
indices such as SAVI and MSAVI effectively 
predict rice yield. This is because soil 
brightness less influences vegetation signals, 
making them more accurate in conditions 
with sparse vegetation or visible soil. 
Research has Xue & Su,( 2017) demonstrated 
that these indices measure photosynthetic 
activity and canopy greenness, which are 
directly related to crop production potential. 

In addition, research Putra et al, (2021)  in 
Malang Regency found a strong correlation 
between MSAVI values and rice 
productivity (r = 0.83). This suggests that 
MSAVI effectively describes rice growth 
stages and productivity, owing to its ability 
to reduce soil background effects. In this 
study, vegetation indices such as SAVI, 
MSAVI, and RGVI can effectively monitor 
and predict agricultural productivity, 
particularly rice, while accounting for 
environmental conditions and land 
characteristics. 
 
B. Rice Production Estimation 
Multiple Linear Regression 

A multiple linear regression analysis 
was conducted to examine the effect of 
vegetation indices as independent variables 
on rice productivity as the dependent 
variable. This study used SAVI, MSAVI, and 
RGVI as independent variables, while rice 
productivity (tons/ha) served as the target 
variable. The multiple linear regression 
equation obtained in this study is as follows: 

 
Produktivitas = 12,914+ 61,239(X1) -73,408(X2) - 3,620(X3) 

 
Further information regarding 

coefficient values, significance levels, and 
model strength can be found in Table 2 
below. 
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Table  2 Multiple Linear Regression 
variable R-Square Coefficient P-Value 
Intercept 

0,823 

12,914 0,002 
SAVI 61,239 0,000 

MSAVI -73,408 0,000 
RGVI -3,620 0,402 

(Source: Data Processing, 2025) 
 

Based on Table 2, the obtained p-value 
of 0.000 (p < 0.05) indicates that the 
regression model as a whole is valid and 
statistically significant. The coefficient of 
determination (R²) value of 0.823 shows that 
the three indices can explain 82.3% of the 
variation in rice productivity, while factors 
outside the model explain the remainder. 
The Adjusted R² value of 0.812 also indicates 
that the model remains robust even 
considering the number of independent 
variables used. 

Individually, SAVI shows a significant 
positive effect on rice productivity, with a 
coefficient of 61.239 and a p-value of 0.000. 
Each one-unit increase in SAVI will increase 
rice productivity by 61.239 tons/ha, 
indicating a statistically strong positive 
correlation between SAVI values and rice 
yield. Conversely, the MSAVI index shows a 
significant adverse effect on productivity, 
with a coefficient of –73.408 and a p-value of 
0.000. This suggests that increases in MSAVI 
values are associated with a decrease in 
yield, likely due to its sensitivity to soil 
background effects. Meanwhile, the RGVI 
index has a coefficient value of –3.620 with a 
p-value of 0.402, meaning it is not 
statistically significant. 

These findings are consistent with the 
study Noureldin et al.(2013)  in Sakha City, 
which showed that a multiple linear 
regression model using NDVI, SAVI, and 

RGVI produced good yield predictions, with 
SAVI contributing significantly. At the same 
time, RGVI had a weaker predictive 
influence. Another study by Christiawan & 
Lai Nguyen.(2024) in Indonesia supports 
this result, showing that SAVI had a high 
coefficient of determination (R²) in rice yield 
prediction models. Furthermore, Putra et al, 
(2021) research in Malang Regency 
demonstrated that MSAVI had a coefficient 
of determination of R² = 0.690. This study 
highlights that MSAVI can still be effective 
in predicting rice yields. These studies 
reinforce that vegetation indices such as 
SAVI and MSAVI can be reliable indicators 
for modeling and predicting rice 
productivity, while RGVI provides a 
relatively weaker influence. 

Figure 11 visualizes the multiple linear 
regression results, which show a strong 
relationship between actual productivity 
values and model predictions. Most 
observed data points are evenly distributed 
around the regression line, indicating high 
predictive accuracy. The scatter pattern 
closely following the regression line 
demonstrates a significant linear 
relationship between the independent 
variables used in the model and actual rice 
productivity. This supports the validity of 
the regression model developed in this 
study.  
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Figure 11. Actual productivity and predictions (Source: Data Processing, 2025) 
 
Classical Assumption Test 

The classical assumption test in this 
study was conducted using three main types 
of tests, namely: 
Normality Test 
           The normality test was conducted to 
ensure that the residuals from the multiple 
linear regression model had a normal 
distribution. This is important because one 
of the basic assumptions in classical 
regression analysis indicates that errors 

(residuals) must be normally distributed to 
ensure that parameter estimates are 
unbiased and efficient (Adjognon et al., 
2017). This study conducted the normality 
test using a descriptive statistical approach 
(Z-skewness and Z-kurtosis) and two formal 
tests, Jarque-Bera and Shapiro-Wilk. The 
results of the normality test can be seen in 
Table 3 below: 

 
Table  3. Normality Test 

Test Type Statistic Value P-value Interpretation 
Z-skewness -0.887 - Normal (|Z| < 1.96) 
Z-kurtosis -0.583 - Normal (|Z| < 1.96) 

Jarque-Bera 1.128 0.568 Normal (p > 0.05) 
Shapiro-Wilk 0.979 0.508 Normal (p > 0.05) 

(Source: Data Processing, 2025) 
 

Table 3 shows that the Z-skewness and 
Z-kurtosis values are -0.887 and -0.583, 
respectively, still within the range of ±1.96. 
This indicates that the residual data does not 
experience significant deviation in 
distribution shape. In addition, the Jarque-
Bera test shows a p-value of 0.568, and the 

Shapiro-Wilk test produces a p-value of 
0.508. Since both p-values are > 0.05, it can be 
concluded that the residual data is normally 
distributed, which indicates that the 
regression model satisfies one of the basic 
assumptions of classical regression, namely 
residual normality. These results are 
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reinforced by the visualisation in Figure 12, 
where the residual histogram (bottom left) 
shows a pattern resembling a normal 
distribution, the residual density plot 
(bottom right) forms a symmetrical bell 

curve, and the Q-Q Plot (top right) shows 
points that follow the diagonal line, all of 
which support the conclusion that the model 
residuals are normally distributed. 

 
 

Figure 12 Residual Normalitas (Source: Data Processing, 2025) 
 
Heteroscedasticity Test 

The heteroscedasticity test evaluates 
whether the regression model's residual 
variance remains constant. In multiple linear 
regression, one of the assumptions that must 
be met is homoscedasticity, which is a 
condition where the residuals have uniform 
variance across all predictor levels. If the 
residual variance is not constant 

(heteroscedasticity), then Ordinary Least 
Squares (OLS) estimation can become 
inefficient even though it remains unbiased 
(Wooldridge, 2015). This study conducted 
the heteroscedasticity test using the Breusch-
Pagan and White tests. The results of the 
Breusch-Pagan test are shown in Table 4 
below: 

 
Table 4. Heteroscedasticity Test 

Test Type LM 
Statistic LM-Test F-Statistic F-Test Interpretation 

Breusch-
Pagan 7.531 0.056 2.705 0.055 No heteroscedasticity 

(p > 0.05) 
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White 14.17 0.116 1.743 0.108 No heteroscedasticity 
(p > 0.05) 

(Source: Data Processing, 2025)          
 

Based on Table 4, it can be seen that the 
Breusch-Pagan test results in a p-value of 
0.056 for the LM-test and 0.055 for the F-test, 
while White results in a p-value of 0.116 for 
the LM-test and 0.108 for the F-test. Since the 
results of both p-values are greater than 0.05, 
the model satisfies the assumption of 
homoscedasticity. Thus, this regression 
model does not show symptoms of 
heteroscedasticity, and the residuals are 
considered to have constant variance. 
Satisfying this assumption indicates that the 
model estimation results are reliable 
regarding error variance stability and 
efficiency in measuring the relationship 
between variables. 

Multicollinearity Test 
The multicollinearity test aims to 

identify a powerful linear relationship 
between independent variables (predictors) 
in a regression model. If multicollinearity 
occurs, the regression coefficient estimates 
become inconsistent, the standard error 
increases, and the understanding of the 
relationship between each predictor and the 
dependent variable becomes unreliable 
(Wooldridge, 2015). The testing in this study 
was conducted using the Variance Inflation 
Factor (VIF) and additional regression 
analysis, the results of which can be seen in 
Tables 5 and 6 below. 

 
Table 5 multicollinearity test 

Variable VIF Interpretation 
SAVI 3810.33 There is multicollinearity. (VIF > 10) 

MSAVI 8252.3 There is multicollinearity. (VIF > 10) 
RGVI 974.96 There is multicollinearity. (VIF > 10) 

(Source: Data Processing, 2025) 
 

Table 6 Additional Regression for Multicollinearity Testing 
Variabel R² F-value P-value 

SAVI 0.996 6246.334 0 
MSAVI 0.995 6029.478 0 
RGVI 0.604 38.279 0 

(Source: Data Processing, 2025) 
 
Based on Tables 5 and 6, all 

independent variables show very high VIF 
values (far exceeding the tolerance limit of 
10), indicating strong multicollinearity in 
this regression model. This result is clarified 
by the R² value > 0.99 in the additional 
regression analysis for SAVI and MSAVI, 
which shows that most of the variation in 
one variable is explained by other 
independent variables. Multicollinearity in 

this study occurs due to the similarity of 
spectral components used in calculating 
vegetation indices. The three indices, SAVI, 
MSAVI, and RGVI, use a combination of NIR 
and Red bands, which overlap. This causes 
the values of the three indices to have a very 
close linear relationship, because the basic 
inputs for their calculation come from the 
same source. 
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Model Feasibility Test 
The model feasibility test in this study was 
conducted using two main tests, namely: 
 
F Test 

The F test was conducted to test the 
overall significance of the model, namely, to 

evaluate whether the independent variables 
affected the dependent variable. In this 
study, the dependent variable used was 
productivity, while the independent 
variables used were vegetation indices 
consisting of SAVI, MSAVI, and RGVI. The 
results of the F test can be seen in Table 7 
below: 

 
Table 7. F Test 

Statistic 
Tes Value P-Value Interpretation 

F-Statistik 76.080 0.000 Statistically significant regression model (p < 0.05), at 
least one independent variable affects productivity 

(Source: Data Processing, 2025)      
 

Based on the results obtained in Table 
7, the F-statistic value is 76.080 with a p-
value of 0.000. Because the p-value is smaller 
than the significance level of 0.05, it can be 
concluded that the regression model used 
shows statistical significance. This indicates 
that one of the SAVI, MSAVI, or RGVI 
indices significantly affects productivity. 
These results show that, overall, the 
regression model can be used to explain 
variations in productivity based on the three 
vegetation indices. 
 

T-test 
The T-test was conducted to evaluate 

the impact of each independent variable 
individually on the dependent variable. In 
this study, the dependent variable was 
productivity, while the independent 
variables consisted of three vegetation 
indices, namely SAVI, MSAVI, and RGVI. 
The results of the T-test can be seen in Table 
8 below. 

Table 8. T Test 
Variable t-hitung P-Value t-Table Interpretation 

Konstanta (const) 3,223 0,002 ±2,0096 Significant (p < 0.05) 
SAVI 5,140 0,0000 ±2,0097 Significant (p < 0.05) 

MSAVI -4,242 0,0001 ±2,0098 Significant (p < 0.05) 
RGVI -0,844 0,402 ±2,0099 Not Significant (p ≥ 0.05) 

(Source: Data Processing, 2025)           
 

Based on the results obtained in Table 
8, the t-count value for each variable is 
compared with the t-table of ±2.0096 at a 
significance level of 5%. If the t-count value 
exceeds the t-table in absolute terms and the 
p-value is < 0.05, then the variable affects 
productivity significantly. The analysis 
results show that the SAVI variable has a t-
value of 5.140 (p-value = 0.0000) and MSAVI 
of -4.242 (p-value = 0.0001), which show a 
statistically significant effect. However, 

MSAVI is having an adverse impact. 
Meanwhile, the RGVI variable has a t-value 
of -0.844 with a p-value of 0.402, which does 
not meet the significance criteria. Therefore, 
it can be concluded that in the study area, 
only the SAVI and MSAVI variables 
contribute significantly to the variation in 
rice productivity in the model, while RGVI 
has no significant effect. 

In addition to F and T testing, this 
regression model was also tested using 
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additional metric models, which yielded an 
R-squared value of 0.823 and an Adjusted R-
squared value of 0.812, indicating that 
approximately 81.2% of the variation in 
productivity can be explained by the 
vegetation index variables in this model. 
This demonstrates fairly good predictive 
ability. The model error metrics also showed 
reasonably good results, with a Mean 
Squared Error (MSE) value of 0.207, a Root 
Mean Squared Error (RMSE) of 0.455, and a 
Mean Absolute Error (MAE) of 0.365. These 
results indicate that the model has a 
relatively low level of prediction error, so it 

can be used to estimate productivity based 
on vegetation indices. 

 
Rice Production Estimation Map 

 Rice production estimation was 
carried out to analyse the actual productivity 
values and the prediction results from the 
model. This comparison is critical to see how 
accurate the prediction model estimates are 
compared to the exact conditions in the field. 
These productivity estimation results were 
calculated using the regression equation 
obtained, which can be seen in Figure 13. 

 
 

Figure 13. productivity estimation map (Source: Data Processing, 2025) 
 

Based on Figure 13, the estimation of 
rice productivity in South Lampung 
Regency is divided into three classes: green 
for high productivity, yellow for medium 
productivity, and red for low productivity. 
The results show that Natar Sub-district is 
predominantly represented by yellow. This 
indicates that the area has moderate 
productivity. However, this yellow 
dominance may not fully reflect the actual 
productivity conditions in the field. One 
factor contributing to this is cloud cover 

during satellite image acquisition, which 
prevents the sensor from accurately 
recording the spectral reflectance of 
vegetation. The presence of clouds can 
reduce the vegetation index values obtained 
(such as SAVI, MSAVI, and RGVI), thereby 
affecting the productivity estimates 
generated by the prediction model. As a 
result, areas that should have high 
productivity may be classified as medium or 
even low. Another influencing factor is 
water availability, which can affect rice 
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productivity levels in this area. Since 
irrigation systems do not fully cover the 
region, some parts of Natar Sub-district 
depend on seasonal rainfall. Instability in 
water supply, especially during critical 
growth stages such as maximum tillering 
and panicle initiation, can significantly 
reduce yields. Crops experiencing water 
stress during these phases usually develop 
sub-optimally, influencing productivity 
estimates derived from vegetation index-
based models. 

Meanwhile, Jati Agung Sub-district 
shows a more varied color pattern, 
combining yellow and green. This pattern 
reflects a relatively heterogeneous level of 
productivity, which may be influenced by 
factors such as soil characteristics, irrigation 
availability, cultivation methods, and the 
rice varieties planted. These results indicate 
that while the region has high productivity 
potential in some areas, others still require 
intervention to improve yields. 

This study, which applied satellite 
imagery and vegetation indices to estimate 
rice productivity, contributes significantly to 
developing data-driven agricultural 
monitoring systems. The use of Sentinel-2A 
imagery together with MSAVI, SAVI, and 
RGVI indices has proven effective in 
providing broad and efficient spatial 
information, thereby supporting 
comprehensive mapping and evaluation of 
agricultural conditions. Remote sensing 
technology enables productivity estimation 
without direct field measurements, 
significantly saving time, labor, and costs, 
particularly in large or hard-to-reach 
agricultural areas. The findings of this 
research also hold potential for use by 
government agencies, especially in the 
agricultural sector, as a data-based 
foundation for policy formulation. Thus, this 
approach can support more efficient land 
management efforts and strengthen 
sustainable food security strategies. 

This study hypothesized that the 
vegetation indices MSAVI, SAVI, and RGVI 
are strongly related to rice productivity. 
Based on the results of multiple linear 
regression analysis, the coefficient of 

determination (R²) obtained was 0.823, 
meaning that about 82.3% of the variation in 
rice productivity can be explained by these 
three indices. The F-test also showed that the 
regression model is statistically significant. 
Therefore, the hypothesis of this study is 
accepted. The three vegetation indices were 
proven to have a strong relationship with 
rice productivity. They can be used to 
develop a rice yield estimation model based 
on Sentinel-2A imagery in Natar and Jati 
Agung Sub-districts. Nevertheless, 
interpretation of the results must still 
consider external factors such as cloud cover 
and water availability to avoid potential bias 
in analysis and in developing spatially based 
agricultural policies. 
 
CONCLUSION 

 The results of this study demonstrate 
that vegetation indices, particularly SAVI 
and MSAVI, have a significant relationship 
with rice productivity in Natar and Jati 
Agung Sub-districts, making them more 
representative than RGVI in describing the 
link between vegetation and productivity. 
The multiple linear regression model based 
on Sentinel-2A imagery provided high-
accuracy productivity estimates, as shown 
by the strong coefficient of determination (R² 
= 0.823) and statistically significant model 
testing. Nevertheless, indications of 
multicollinearity and the influence of 
external factors such as rice varieties, 
irrigation systems, and soil conditions 
remain limitations that need to be 
addressed. Therefore, integrating remote 
sensing with field data can be considered an 
effective approach for rice productivity 
mapping, but further refinement of the 
model by including additional agronomic 
variables and applying more advanced 
analytical methods is recommended to 
improve accuracy in future research. 
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