Kernel Comparison on Support Vector Machine for Detecting Stairs Descent
Abstract
Terdapat 4 kernel yang dapat digunakan dalam klasifikasi Support Vector Machine dalam membuat hyperplane. Keempat kernel tersebut adalah linear, polynomial, gaussian dan sigmoid. Setiap kernel dapat menghasilkan akurasi yang berbeda-beda. Hal ini dikarenakan pengaruh sebaran data yang diklasifikasikan. Terdapat 2 kelas yang diklasifikasikan, yaitu lantai dan tangga turun. Dilakukan proses ekstraksi fitur tekstur terhadap citra lantai dan tangga turun menggunakan metode Gray Level Co-occurence Matrix. Terdapat 7 fitur dari GLCM yang dihasilkan pada proses ekstraksi fitur. Selanjutnya dilakukan klasifikasi menggunakan Support Vector Machine dengan mencoba setiap kernelnya. Dari hasil pengujian didapatkan kernel linear menghasilkan akurasi yang paling tinggi, yaitu 89%. Kernel sigmoid mendapatkan akurasi 84%. Kernel Gaussian mendapatkan akurasi sebesar 85%. Sedangkan kernel polynomial mendapatkan akurasi yang paling rendah yaitu 78%.
Keywords
Full Text:
PDFReferences
R. Sathya and A. Abraham, “Comparison of Supervised and Unsupervised Learning Algorithms for Pattern Classification,” Int. J. Adv. Res. Artif. Intell., vol. 2, no. 2, pp. 34–38, 2013, doi: 10.14569/ijarai.2013.020206.
E. Retnoningsih and R. Pramudita, “Mengenal Machine Learning Dengan Teknik Supervised Dan Unsupervised Learning Menggunakan Python,” Bina Insa. Ict J., vol. 7, no. 2, p. 156, 2020, doi: 10.51211/biict.v7i2.1422.
H. Abijono, P. Santoso, and N. L. Anggreini, “Algoritma Supervised Learning Dan Unsupervised Learning Dalam Pengolahan Data,” J. Teknol. Terap. G-Tech, vol. 4, no. 2, pp. 315–318, 2021, doi: 10.33379/gtech.v4i2.635.
D. I. Pushpita Anna Octaviani, Yuciana Wilandari, “Penerapan Metode SVM Pada Data Akreditasi Sekolah Dasar Di Kabupaten Magelang,” J. Gaussian, vol. 3, no. 8, pp. 811–820, 2014.
A. Perdana and M. T. Furqon, “Penerapan Algoritma Support Vector Machine ( SVM ) Pada Pengklasifikasian Penyakit Kejiwaan Skizofrenia ( Studi Kasus : RSJ . Radjiman Wediodiningrat , Lawang ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 9, pp. 3162–3167, 2018.
V. Apostolidis-afentoulis, “SVM Classification with Linear and RBF kernels,” ResearchGate, no. July, pp. 0–7, 2015, doi: 10.13140/RG.2.1.3351.4083.
T. Hackel et al., “DEPTH-AWARE INDOOR STAIRCASE DETECTION AND RECOGNITION FOR THE VISUALLY IMPAIRED Rai Munoz Xuejian Rong Yingli Tian Dept . of Electrical Engineering The City College of New York , CUNY New York , NY 10031,” Int. J. Adv. Robot. Syst., vol. 15, no. 1, pp. 1–18, 2013, [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6460985%0Ahttp://pointclouds.org/%0Ahttp://www.cc.gatech.edu/~atrevor/resources/publications/spme_2013_segmentation.pdf%0Ahttp://dx.doi.org/10.1016/j.jvcir.2013.11.005%0Ahttps://doi.org/10.1016/j.cviu.2.
A. Wali, S. Bahari, F. Utaminingrum, and A. S. Budi, “K- Value Effect Based on Combination GLCM Angle and KNN for Detecting Smart Wheelchair,” vol. 5, no. 1, pp. 23–31, 2020.
K. Kumar, R. K. Mishra, and D. Nandan, “Efficient Hardware of RGB to Gray Conversion Realized on FPGA and ASIC,” Procedia Comput. Sci., vol. 171, no. 2019, pp. 2008–2015, 2020, doi: 10.1016/j.procs.2020.04.215.
F. Utaminingrum, A. W. Satria Bahari Johan, I. K. Somawirata, Risnandar, and A. Septiarini, “Descending stairs and floors classification as control reference in autonomous smart wheelchair,” J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2021, doi: 10.1016/j.jksuci.2021.07.025.
D. Manurung and E. M. Ginting, “Jurnal einstein,” Bioilmi Ed. Agustus, vol. 1, no. 1, pp. 72–82, 2015, [Online]. Available: http://www.journals.cambridge.org/abstract_S0263034606000267%0Ahttp://ejurnal.bppt.go.id/index.php/JAI/article/view/2452/2063%0Ahttps://jurnalfarmasimalahayati.sch.id/index.php/jfm/article/download/7/3/.
R. Listia and A. Harjoko, “Klasifikasi Massa pada Citra Mammogram Berdasarkan Gray Level Cooccurence Matrix (GLCM),” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 8, no. 1, p. 59, 2014, doi: 10.22146/ijccs.3496.
V. Jakkula, “Tutorial on Support Vector Machine (SVM),” Sch. EECS, Washingt. State Univ., pp. 1–13, 2011, [Online]. Available: http://www.ccs.neu.edu/course/cs5100f11/resources/jakkula.pdf.
a adhitiawarman, d hartanto, and ..., “the Implementation of Naïve Bayes and Support Vector Machine (3. Svm) Algorithm, in Determining Achieving Students in Smp Negeri 8 …,” Jitk (Jurnal Ilmu …, vol. 7, no. 1, pp. 1–6, 2021, doi: 10.33480/jitk.v7i1.2001.THE.
S. Rüping, “SVM Kernels for Time Series Analysis,” Univ. Dortmund, no. April, p. 8, 2001, doi: 10.17877/DE290R-15237.
DOI: https://doi.org/10.24114/cess.v7i2.33477
Article Metrics
Abstract view : 338 timesPDF - 347 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
CESS (Journal of Computer Engineering, System and Science)
CESS (Journal of Computer Engineering, System and Science) is licensed under a Creative Commons Attribution 4.0 International License