Penerapan Machine Learning untuk Deteksi Hoaks di Media Sosial Indonesia: Systematic Literature Review

Authors

  • Afifah Khaerani Aziz Universitas Salakanagara
  • Jaka Wijaya Kusuma Universitas Bina Bangsa

DOI:

https://doi.org/10.24114/cess.v10i2.66584

Keywords:

Machine Learning, Deteksi Hoaks, media sosial, Pemrosesan Bahasa Alami, Systematic Literature Review

Abstract

Maraknya penyebaran hoaks di media sosial Indonesia telah mendorong peningkatan minat terhadap penggunaan kecerdasan buatan, khususnya machine learning (ML), untuk mendeteksi informasi palsu secara otomatis. Penelitian ini bertujuan untuk mengidentifikasi tren, metodologi, dan efektivitas pendekatan ML dalam deteksi hoaks pada media sosial Indonesia melalui kajian pustaka sistematis. Metode systematic literature review (SLR) digunakan dengan merujuk pada panduan PRISMA untuk menelusuri publikasi dari database Scopus, IEEE Xplore, dan Google Scholar selama lima tahun terakhir. Dari total 754 artikel awal, sebanyak 52 artikel memenuhi kriteria kelayakan dan dianalisis lebih lanjut. Evaluasi dilakukan melalui sintesis tematik dan komparasi performa algoritma ML berdasarkan metrik akurasi, presisi, recall, dan F1-score. Hasil kajian menunjukkan bahwa model berbasis deep learning, khususnya BERT, memberikan performa terbaik (akurasi hingga 91.2%), diikuti oleh LSTM dan CNN. Selain itu, pendekatan multi-modal dan penggunaan data lokal Indonesia menjadi faktor signifikan yang mempengaruhi efektivitas deteksi. Kajian ini menyimpulkan bahwa integrasi model berbasis transformer dan data kontekstual Indonesia berpotensi meningkatkan akurasi sistem deteksi hoaks. Artikel ini memberikan kontribusi berupa pemetaan komprehensif metode ML dalam konteks lokal serta rekomendasi implementatif untuk pengembangan sistem deteksi hoaks berbasis AI yang adaptif dan akurat.

Author Biographies

Afifah Khaerani Aziz, Universitas Salakanagara

Program Studi Informatika, Fakultas Sains dan Teknologi, Universitas Salakanagara

Jaka Wijaya Kusuma, Universitas Bina Bangsa

Program Studi Pendidikan Matematika, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Bina Bangsa

References

[1] Kementerian Komunikasi dan Informatika Republik Indonesia, "Laporan Tahunan Rekapitulasi Konten Hoaks di Indonesia 2024," Kominfo RI, Jakarta, Indonesia, 2024. [Online]. Available: https://kominfo.go.id

[2] Masyarakat Anti Fitnah Indonesia (MAFINDO), "Laporan Tren Hoaks di Indonesia Tahun 2024," MAFINDO, Jakarta, Indonesia, 2024. [Online]. Available: https://turnbackhoax.id

[3] K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, "Fake news detection on social media: A data mining perspective," ACM SIGKDD Explor. Newsl., vol. 19, no. 1, pp. 22–36, 2020. doi: 10.1145/3137597.3137600.

[4] S. Vosoughi, D. Roy, and S. Aral, "The spread of true and false news online," Science, vol. 359, no. 6380, pp. 1146–1151, 2018. doi: 10.1126/science.aap9559.

[5] X. Zhou and R. Zafarani, "A survey of fake news: Fundamental theories, detection methods, and opportunities," ACM Comput. Surv., vol. 53, no. 5, pp. 1–40, 2020. doi: 10.1145/3395046.

[6] R. Saputra and A. S. Girsang, "Hoax detection on Indonesian news using machine learning and NLP," Jurnal Ilmiah FIFO, vol. 14, no. 1, pp. 55–64, 2022. doi: 10.22441/fifo.v14i1.12674.

[7] F. P. Putri and Adiwijaya, "Hoax detection in Indonesian using BERT and Word Embedding," ComTech: Computer, Mathematics and Engineering Applications, vol. 12, no. 2, pp. 107–118, 2021. doi: 10.21512/comtech.v12i2.6616.

[8] O. Alonso, R. Baeza-Yates, and A. Gionis, "An analysis of cross-lingual fake news detection," in Proc. of the 59th Annual Meeting of the Association for Computational Linguistics, 2021, pp. 2740–2751, doi: 10.18653/v1/2021.acl-long.230.

[9] A. Rogers, O. Kovaleva, and A. Rumshisky, "A primer in BERTology: What we know about how BERT works," arXiv preprint arXiv:2004.14995, 2020.

[10] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of deep bidirectional transformers for language understanding," arXiv preprint arXiv:1810.04805, 2019.

[11] Y. Liu et al., "RoBERTa: A robustly optimized BERT pretraining approach," arXiv preprint arXiv:1907.11692, 2019.

[12] Y. Zhang, X. Jin, and H. Ma, "Multi-modal fake news detection via cross-modal attention network," IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 1, pp. 86–98, 2022. doi: 10.1109/TKDE.2020.2973324.

[13] S. Wu and M. Dredze, "Are all languages created equal in multilingual BERT?," arXiv preprint arXiv:2004.14283, 2020.

[14] F. Almeida, J. D. Santos, and J. A. Monteiro, "The challenges and opportunities in the digitalization of companies in a post-COVID-19 world," Journal of Business Research, vol. 116, pp. 284–286, 2020. doi: 10.1016/j.jbusres.2020.05.028.

[15] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, "Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement," PLoS Medicine, vol. 6, no. 7, e1000097, 2009. doi: 10.1371/journal.pmed.1000097.

[16] G. Resende et al., "Analyzing textual (mis)information shared in WhatsApp groups," PLoS ONE, vol. 14, no. 10, e0210441, 2019. doi: 10.1371/journal.pone.0210441.

[17] S. P. Nursantika and Y. Nugroho, "Fake news detection in Indonesian social media using BERT," ComTech: Computer, Mathematics and Engineering Applications, vol. 13, no. 1, pp. 19–26, 2022. doi: 10.21512/comtech.v13i1.7715.

[18] M. Irawan, T. P. W. Kusumo, and A. Pratama, "Deteksi berita palsu pada Twitter berbahasa Indonesia menggunakan algoritma naive bayes dan SVM," Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 5, pp. 870–876, 2020. doi: 10.29207/resti.v4i5.2384.

[19] D. M. Setyawan, R. Ferdiana, and A. Rizal, "Pendekatan deep learning untuk deteksi hoaks COVID-19 pada media sosial berbahasa Indonesia," Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 10, no. 4, pp. 305–312, 2021. doi: 10.22146/jnteti.v10i4.1793.

[20] I. Fahmi, Y. Saputra, and D. S. Maylawati, "Analisis performa model klasifikasi hoaks pada berita politik berbahasa Indonesia menggunakan CNN," Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 8, no. 4, pp. 677–684, 2021. doi: 10.25126/jtiik.2021843287.

Downloads

Published

2025-07-27

How to Cite

Aziz, A. K., & Jaka Wijaya Kusuma. (2025). Penerapan Machine Learning untuk Deteksi Hoaks di Media Sosial Indonesia: Systematic Literature Review. CESS (Journal of Computer Engineering, System and Science), 10(2), 608–616. https://doi.org/10.24114/cess.v10i2.66584

Issue

Section

Articles