CALCULATION OF ELECTRONIC PROPERTIES OF LiBX3 (B = Pb AND Sn; X = Br, Cl AND I) CUBIC PHASE BY DENSITY FUNCTIONAL THEORY
DOI:
https://doi.org/10.24114/ein.v12i3.61583Abstract
Perovskite solar cells utilize perovskite as the active material to convert sunlight into electrical energy. Perovskite is a compound with a crystal structure of ABX₃, where A and B are cations, and X is an anion, usually a halide. Research continues to find perovskites with high efficiency. This efficiency is related to the electronic structure, which can be analyzed using Density Functional Theory (DFT). In this study, the electronic structure of cubic phase LiBX₃ perovskites (B = Pb and Sn; X = Br, Cl, and I) is investigated using Quantum ESPRESSO software. Various parameters such as cut-off energy, k-points, and lattice constants were modified to obtain optimal values. From the optimization results, the band gap, DOS, and PDOS values for the six perovskites were obtained. The resulting band gap energy (Eg) are LiPbBr₃ at 1,71 eV, LiPbCl₃ at 1,87 eV, LiPbI₃ at 1,43 eV, LiSnBr₃ at 0,51 eV, LiSnCl₃ at 0,65 eV, and LiSnI₃ at 0,28 eV. These results show that the band gap energy values increase with the change in atomic radius from Sn to Pb and decrease with the change in atomic radius from Cl, Br to I. The electronic structure calculations of LiBX₃ (B = Pb and Sn; X = Br, Cl, and I) show semiconductor properties that have the potential to be used as light-absorbing materials in perovskite solar cells. This study states that LiBX₃ has great potential in solar cell applications and offers a deep understanding of the relationship between crystal structure and its electronic properties.Downloads
Published
Issue
Section
License
Copyright (c) 2024 EINSTEIN (e-Journal)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 4.0 License (CC BY-NC) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal for non commercial purposes.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.