ANALISIS PERILAKU SOLUSI MODEL GERAK AYUNAN YANG DIPENGARUHI GAYA GESEKAN YANG BERBANDING LURUS DENGAN KECEPATAN SUDUT
DOI:
https://doi.org/10.24114/jmk.v4i1.11016Abstract
ABSTRAKModel gerak ayunan yang dipengaruhi gaya gesekan yang berbanding lurus dengan kecepatan sudut merupakan suatu persamaan diferensial nonlinear. Model ini diubah menjadi sistem persamaan diferensial nonlinear yang lebih sederhana dan memiliki solusi bersifat periodik dengan titik kritis dengan n bilangan bulat. Titik-titik kritis akan stabil jika n adalah bilangan genap dan sebaliknya, tidak stabil jika n adalah bilangan ganjil. Bentuk kestabilan (simpul, pelana atau spiral) dari titik kritis bergantung pada nilai-nilai parameter model tersebut.Kata kunci: persamaan diferensial, sistem dinamik, gerak ayunan, titik kritis, kestabilan ABSTRACTThe pendulum motion model influenced by friction force that is directly proportional to the angular velocity. This model is converted into a simpler nonlinear differential equation system and has a periodic solution with critical point where n is an integer. The critical points will be stable if n is an even numbers and vice versa, will be unstable if n is an odd number. The stability form (node, saddle or spiral) of critical points depends on the value of the model™s parameter.Key words: differential equation, dynamic system, pendulum motion, critical points, stabilityDownloads
Published
2018-04-01
Issue
Section
Articles
License
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).