ANALISIS KONKURENSI GARIS YANG MELALUI TITIK SINGGUNG INCIRCLEDAN HASIL ROTASI INCIRCLE PADA SEGITIGA SAMA SISI
Abstract
ABSTRAK
Penelitian ini menganalisa konkurensi garis-garis cevian pada segitiga sama sisi dan memberikan analisa lanjutan terhadap hasil yang diperoleh. Pembentukan garis-garis cevian pada segitiga sama sisi dilakukan dengan menggunakan titik singgung incircle terhadap sisi-sisi segitiga tersebut, dan menggunakan titik singgung hasil rotasi 180o (dengan sumbu rotasi masing-masing titik sudut segitiga) incircle terhadap perpanjangan sisi segitiga sama sisi tersebut. Setiap tiga garis cevian tertentu yang telah terbentuk akan konkuren di sebuah titik. Dengan menggunakan metode tersebut diperoleh tiga buah titik konkurensi garis-garis cevian di hadapan masing-masing sudut luar segitiga sama sisi. Apabila ketiga titik konkurensi tersebut dihubungkan satu sama lain maka akan terbentuk sebuah segitiga baru yang sebangun dengan segitiga pertama dengan ukuran yang lebih besar. Karena kedua segitiga tersebut sebangun maka setiap sisi yang bersesuaian adalah sebanding. Diperoleh perbandingan sisi segitiga sama sisi pertama dengan segitiga sama sisi kedua adalah dengan perbandingan luasnya adalah . Sehingga disimpulkan apabila perbandingan jari-jari incircle dengan jari-jari lingkaran penyinggung segitiga sama sisi dari arah sudut luar adalah maka diperoleh perbandingan luas daerah segitiga sama sisi yang pertama dengan yang kedua adalah .
Kata kunci: Cevian, Incircle, Konkurensi garis.
ABSTRACT
This paper analyze about cevians concurrence of equilateral triangle and then reanalyze the result. Cevians of equilateral triangle constructed by using tangent of incircle to the sides of the triangle, and using tangent of incircle rotate 180o (all vertice of the triangle are the pivot of rotation) to the extended of sides of the triangle. Each three certain cevians would be concurrrent in a point. By using this method we got three points the concurrence of cevians outside the triangle. When that concurrence points connected one each other then we got the second triangle which similar with the first equilateral triangle and larger then the first. Since both of the triangle similar, so that every side which in mutual accord would be proportional. The sides proportion of first equilateral triangle with the second equilateral triangle was and the areas proportion of both of the triangle was . Consequently, when the proportion of radius incircle with radius the tangent circles from outside the angle of first triangle was , then we got the proportion areas of the first triangle with the second triangle was .
Keywords: Cevian, Incircle, Concurrence of lines.
Full Text:
PDFDOI: https://doi.org/10.24114/jmk.v2i1.8813
Article Metrics
Abstract view : 277 timesPDF - 222 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 KARISMATIKA: Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika dan Aplikasi
KARISMATIKA :
Kumpulan Artikel Ilmiah Informatika, Statistik, Matematika dan Aplikasi