Utilization of Remote Sensing and GIS For The Calculation of Eucalypthus Productivity at BKPH Sukun

Authors

  • Lutfi Ailuul Waahidati State University of Surabaya
  • Eko Budiyanto

DOI:

https://doi.org/10.24114/tgeo.v10i1.25139

Abstract

The Sukun Forest Management Unit (BKPH) is the manager of both protection and production forest, which includes eucalyptus trees covering an area of 3,701 ha. One of the efforts to optimize eucalyptus production is to estimate the productivity of eucalyptus. Advances in remote sensing technology and geographic information systems (GIS) can provide fast and accurate specific data to be able to estimate the production of eucalyptus leaves. The purpose of this research is to build a model for calculating eucalyptus production based on remote sensing data and to estimate the amount of eucalyptus production by applying remote sensing data. This research uses remote sensing and geographic information system (GIS) with Soil Adjusted Vegetation Index (SAVI) and the number of trees of eucalyptus as parameters to analyze the productivity of eucalyptus leaves. The results showed that the spectral value of SAVI and the number of trees were able to explain the yield of eucalyptus leaves with an accuracy of 98%. Estimation of eucalyptus production can be done through multiple linear regression models between the variable number of trees and the SAVI spectral value. The result showed an accuracy of 78% with the equation y = 0.405 + 1.190x1 + 0.001x2 and the Standard Error of Estimate are 0.052. The highest production estimate is 1.239 tonnes/pixel, while the lowest estimate is 0.633 tonnes/pixel.

Author Biographies

Lutfi Ailuul Waahidati, State University of Surabaya

Geography Education, Faculty of Social Sciences and Law, State University of Surabaya

Eko Budiyanto

Faculty of Social Sciences and Law, State University of Surabaya

References

Andana, E. K. (2015). Pengembangan Data Citra Satelit Landsat 8 untuk Pemetaan Area Tanaman Holtikultura dengan Berbagai Metode Algoritma Index Vegetasi. Prosiding Seminar Nasional Manajemen Teknologi XXII. Surabaya.

Danoedoro, P. (2012). Pengantar Penginderaan Jauh Digital. Yogyakarta: Penerbit Andi.

Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assesment in Higher Plant Leaves. Journal Plant Physiol, 271-282.

Howard, J. A. (1996). Penginderaan Jauh untuk Sumberdaya Hutan Teori dan Aplikasi. Yogyakarta: Gadjah Mada University Press.

KLHK, Kementrian Lingkungan Hidup & Kehutanan Republik Indonesia. (2019). Retrieved from: http://www.menlhk.go.id /site/single_post/2253

Lintang, N. C., Sanjoto, T. B., & Tjahjono, H. (2017). Kajian Kerapatan Vegetasi Hutan Lindung Gunung Ungaran Jawa Tengah Tahun 2016 menggunakan Metode Indeks Vegetasi. Geo Image, Vol. 6 No. 1.

Liu, J. G., & Mason, P. J. (2009). Essensial Image Processing Model for Remote Sensing Data Analysis. Hoboken, USA: John Wiley and Sons.

Nugroho, A. (2017). Analisis Kerapatan Vegetasi di Kecamatan Ngaglik Tahun 2006 dan 2016 Menggunakan Teknik Penginderaan Jauh. Geo Educasia, Vol. 2 No. 3.

Purhantanto, L. N., Daenoedoro, P., & Wicaksono, P. (2019). Kajian Transformasi Indeks Vegetasi Citra Satelit Sentinel-2A untuk Estimasi Produksi Daun Kayu Putih Menggunakan Linear Spectral Mixture Analysis. Jurnal Nasional Teknologi Terapan, Vol. 3 No. 1, 63-86.

Rahayu, & Candra, D. S. (2014). Koreksi Radiometrik Citra Landsat-8 Kanal Multispektral Menggunakan Top of Atmosphere (TOA) untuk Mendukung Klasifikasi Penutup Lahan. Seminar Nasional Penginderaan Jauh, 762-767.

Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of Soil-Adjusted Vegetation Indices. Remote Sensing Environment, 95-107.

Sudiana, D., & Diasmara, E. (2008). Analisa Indeks Vegetasi menggunakan Data Satelit NOAA/AVHRR dan TERRA/AQUA-MODIS. Seminar on Intelligent Technology and Its Applications.

Vanclay, J. K. (1995). Growth Model for Tropical Forest: A Synthesis of Models and Methods. Forest Sience, 41 (1), 7-42.

Wójtowicz, M., Wójtowicz, A., & Piekarczyk, J. (2016). Application of Remote Sensing Methods in Agriculture. Communications in Biometry and Crop Science, 11 (1), 31-50.

Downloads

Published

2021-11-30

How to Cite

Waahidati, L. A., & Budiyanto, E. (2021). Utilization of Remote Sensing and GIS For The Calculation of Eucalypthus Productivity at BKPH Sukun. Tunas Geografi, 10(1), 31–40. https://doi.org/10.24114/tgeo.v10i1.25139