Analysis Changes in Mangrove Forest Cover Using Multi-Sensor Image in North Luwu District South Sulawesi 2015-2020

Maulana Abdul Hakim, Darwin Parlaungan Lubis, Meilinda Suriani Harefa, Muhammad Ridha Syafii Damanik, Ayu Suciani

Abstract


Mangrove forest is one of the essential components of natural ecosystems. Mangrove forests have various essential functions, such as holding land sediments, tsunamis, and ocean waves, storing large amounts of carbon, and providing various other benefits for coastal and land areas. However, the conversion of mangrove forests has reduced and degraded mangrove land. Therefore, monitoring and conserving land changes in mangrove forests must be carried out to determine the effects on land ecosystems and coastal areas. Remote sensing has the spatial ability to analyze changes in mangrove ecosystems in coastal regions temporally because it has the advantage of using satellite imagery data. This study compares the classification method using multiple image sensors to analyze land cover changes in mangrove forests in North Luwu Regency, South Sulawesi, in 2015-2020. The technique used in this research is the classification of Object-Based Image Analysis (OBIA) and the variety of Maximum Likelihood. The results of Sentinel-1 image analysis using Maximum Likelihood provide information on changes in mangrove land cover during 2015-2020 with an area of 449.17 (Ha), while the results of Landsat 8 analysis using (OBIA) provide information on changes in mangrove land cover 596 (Ha).

Keywords: Optics, Radar, OBIA, Maximum Likelihood, Mangrove


Full Text:

PDF

References


Ahmad, A., Fisu, A. A., & Didiharyono, D. (2019). Analisis Potensi Ekosistem Mangrove Sebagai Pengembangan Objek Wisata (Studi Kasus: Kabupaten Wakatobi). Prosiding, 4(1).

Alongi, D. M. (2012). Present state and future of the World's mangrove forests Present state and future of the World's mangrove forests. November 2002. https://doi.org/10.1017/S0376892902000231

Bachmid, F., Sondak, C., & Kusen, J. (2018). Estimasi penyerapan karbon hutan mangrove Bahowo Kelurahan Tongkaina Kecamatan Bunaken. Jurnal Pesisir Dan Laut Tropis, 6(1), 8. https://doi.org/10.35800/jplt.6.1.2018.19463

Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, & Silliman BR. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2)(2), 169–193.

Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., Dong, J., Qin, Y., Zhao, B., Wu, Z., Sun, R., Lan, G., Xie, G., Clinton, N., & Giri, C. (2017). A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 104–120. https://doi.org/10.1016/j.isprsjprs.2017.07.011

Chow, J. (2018). Mangrove management for climate change adaptation and sustainable development in coastal zones. Journal of Sustainable Forestry, 37(2), 139–156. https://doi.org/10.1080/10549811.2017.1339615

Damanik, Y. V. (2018). Penggunaan Citra Radar Sentinel-1 Untuk Identifikasi Tutupan Lahan di Kabupaten Pakpak Bharat.

Darmawan, S., Takeuchi, W., Vetrita, Y., Wikantika, K., & Sari, D. K. (2015). Impact of topography and tidal height on ALOS palsar polarimetric measurements to estimate aboveground biomass of mangrove forest in Indonesia. Journal of Sensors, 2015. https://doi.org/10.1155/2015/641798

Dat Pham, T., Xia, J., Thang Ha, N., Tien Bui, D., Nhu Le, N., & Tekeuchi, W. (2019). A review of remote sensing approaches for monitoring blue carbon ecosystems: Mangroves, seagrasses and salt marshes during 2010–2018. Sensors (Switzerland), 19(8). https://doi.org/10.3390/s19081933

Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2012). Mangrove adalah salah satu hutan terkaya karbon di kawasan tropis. CIFOR Brief, 13(12), 12.

Ferdian, A., Sm, S., Ilmu, J., Negara, A., Ilmu, F., & Politik, I. (2021). Pemberdayaan Masyarakat Berbasis Modal Sosial Dalam Rangka Pelestarian Hutan Mangrove Oleh : Kerusakan Mangrove sering terjadi di daerah pesisir provinsi Sulawesi Selatan Sumber Data : Dinas Kehutanan Provinsi Sulsel 2019. 10(1), 54–66. http://www.ejournal.unmus.ac.id/index.php/societas/article/view/3296/1896

Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x

Harefa, M. S., Nasution, Z., Mulya, M. B., & Maksum, A. (2022). Mangrove species diversity and carbon stock in silvofishery ponds in Deli Serdang District, North Sumatra, Indonesia. Biodiversitas, 23(2), 655–662. https://doi.org/10.13057/biodiv/d230206

Heumann, B. W. (2011). An object-based classification of mangroves using a hybrid decision tree-support vector machine approach. Remote Sensing, 3(11), 2440–2460. https://doi.org/10.3390/rs3112440

Jaya, I. N. S., Saleh, M. B., Ismail, R. I., Hendri Nurwanto, Kusmana, C., & Abe, N. (2001). Practical Technique For Detecting Mangrove Vegetation Using Digital Mos Messr and Landsat-5 TM Images: A Case Study in Karawang Cape, West Java. VII(1), 23–36.

Kamal, M., & Phinn, S. (2011). Hyperspectral data for mangrove species mapping: A pixel-based and object-based approach comparison. Remote Sensing, 3(10), 2222–2242. https://doi.org/10.3390/rs3102222

Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote sensing of mangrove ecosystems: A review. In Remote Sensing (Vol. 3, Issue 5). https://doi.org/10.3390/rs3050878

Murdiyarso, D., Purbopuspito, J., Kauffman, J. B., Warren, M. W., Sasmito, S. D., Donato, D. C., Manuri, S., Krisnawati, H., Taberima, S., & Kurnianto, S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change, 5(12), 1089–1092. https://doi.org/10.1038/nclimate2734

Nguyen, H. H., Tran, L. T. N., Le, A. T., Nghia, N. H., Duong, L. V. K., Nguyen, H. T. T., Bohm, S., & Premnath, C. F. S. (2020). Monitoring changes in coastal mangrove extents using multi-temporal satellite data in selected communes, Hai Phong City, Vietnam. Forest and Society, 4(1), 256–270. https://doi.org/10.24259/fs.v4i1.8486

Onrizal. (2010). Perubahan Tutupan Hutan Mangrove di Pantai Timur Sumatera Utara Periode 1977-2006 Onrizal. Jurnal Biologi Indonesia, 6(2), 163–172.

Pratiwi, A. W., Muh, L., Jaya, G., & Saleh, F. (2020). Perbandingan Metode Berbasis Piksel Dan Objek Citra Sentinel 2A Untuk Klasifikasi Penggunaan Lahan. 4(1), 117–124.

Raharjo, P., Setiady, D., & Zallesa, S. (2015). Menjadi Lahan Tambak Di Kawasan Pesisir Kabupaten Cirebon Identification Coastal Damage Due To the Mangrove Forest Conversion Into Farms Land in a Coastal Area of Cirebon District. 13(1), 9–24.

Suprayogi, B., Purbopuspito, J., Harefa, M. S., Panjaitan, G. Y., & Nasution, Z. (2022). Ecosystem Carbon Stocks of Restored Mangroves and Its Sequestration in Northern Sumatra Coast, Indonesia. Universal Journal of Agricultural Research, 10(1), 1–19. https://doi.org/10.13189/UJAR.2022.100101

Valiela, I., Bowen, J. L., & York, J. K. (2001). Mangrove Forests : One of the World's Threatened Major Tropical Environments. 51(10).

Wibowo, T. S., & Suharyadi, R. (2009). Aplikasi Object-Based Image Analysis (OBIA) untuk Deteksi Perubahan Penggunaan Lahan Menggunakan Citra ALOS AVNIR-2. International Safeguards and Satellite Imagery: Key Features of the Nuclear Fuel Cycle and Computer-Based Analysis, 107–111. https://doi.org/10.1007/978-3-540-79132-4_8

Wicaksono, P. (2017). Mangrove aboveground carbon stock mapping of multi-resolution passive remote-sensing systems. International Journal of Remote Sensing, 38(6), 1551–1578. https://doi.org/10.1080/01431161.2017.1283072

Wicaksono, P., Danoedoro, P., Hartono, H., Nehren, U., & Ribbe, L. (2011). Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image. Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, 8174(October 2011), 81741B. https://doi.org/10.1117/12.897926




DOI: https://doi.org/10.24114/tgeo.v11i2.41349

Article Metrics

Abstract view : 272 times
PDF - 242 times

Refbacks

  • There are currently no refbacks.


Copyright ©2020 Jurusan Pendidikan Geografi Fakultas Ilmu Sosial Universitas Negeri Medan dan Ikatan Geograf Indonesia (IGI)

Creative Commons License


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

slot gacor slot