Dynamics of Urban Heat Island and NO2 Gas During the Covid-19 Pandemic

Siti Risnayah, Waode Sitti Mudhalifana, La Ode Restele

Abstract


To know the COVID-19 pandemic’s impact on the environment, an analysis of Urban Heat Island and pollutant gas was carried out. From March to June 2020, the Indonesian government implemented the Large-Scale Social Restrictions (PSBB) policy, requiring people to limit activities in public places. The data used are Land Surface Temperature (LST) from the Terra MODIS and Nitrogen Dioxide (NO2) concentration from the TROPOMI sensor. The data is processed using the Google Earth Engine to produce comparative values before the PSBB implementation (2019), during (2020), and after (2021-2022). The LST will be derived into Surface Urban Heat Island (SUHI) to compare climate conditions in urban (Kendari) and rural areas (Ranomeeto, Lalonggasumeeto, North Moramo). The results show that reducing community activities during the pandemic was not able to reduce LST but succeeded in inhibiting the increase rate. The LST trend is more affected by rainfall variables where higher rainfall causes lower LST and vice versa. The SUHI value shows a downward trend, meaning that the Urban Heat Island effect has been inhibited. The most significant impact of PSBB was a 25.9% reduction in NO2 concentration. These results prove that the COVID-19 pandemic has successfully restored environmental health constantly exposed to air pollution. 

Keywords: COVID-19, Urban Heat Island, NO2, PSBB, Land Surface Temperature


Full Text:

pdf

References


Aldrian, E. (2018). Observation of Greenhouse Gases and Aerosols Under Variability of Indonesia Climate. An Article in International Regional Science Meeting, 28 - 30 May 2018. Philippines.

Aprillia, T., Faradiva, F., & Rachim, M. A. (2020, October 26). Urban Heat Island (UHI). Handal Selaras Web. Cited in https://www.handalselaras.com/urban-heat-island-uhi/ [8 February 2023].

Badriyah, I. U. (2014). Indikasi Berhentinya Urban Heat Island (Suhu) di Bali Saat Nyepi. Jurnal Meteorologi dan Geofisika, 15(3).

Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., ... & Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The lancet, 389(10082), 1907-1918.

Du, H., Wang, D., Wang, Y., Zhao, X., Qin, F., Jiang, H., & Cai, Y. (2016). Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Science of the Total Environment, 571, 461-470.

Feng, Z., Wang, X., Yuan, J., Zhang, Y., & Yu, M. (2023). Changes in Air Pollution, Land Surface Temperature, and Urban Heat Islands during the COVID-19 Lockdown in Three Chinese Urban Agglomerations. Science of The Total Environment, 164496.

Ghiffari, R. A. (2020). Dampak populasi dan mobilitas perkotaan terhadap penyebaran pandemi COVID-19 di Jakarta. Tunas Geografi, 9(1), 81-88.

Google LLC. (2022, October 17). Google COVID-19 Community Mobility Reports. Cited in https://www.google.com/covid19/mobility/ [21 March 2023].

He, J., Gong, S., Yu, Y., Yu, L., Wu, L., Mao, H., ... & Li, R. (2017). Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environmental pollution, 223, 484-496.

Hidayat, R., & Farihah, A. W. (2020). Identifikasi perubahan suhu udara dan curah hujan di Bogor. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 10(4), 616-626.

Isnoor, K., Putra, A. B., & Firmantari, M. A. (2021). Analisis Kenyamanan Termal Berdasarkan Temperature Humidity Index dan Pengaruhnya Terhadap Curah Hujan di Kota Tanjungpinang. Buletin GAW Bariri, 2(1), 1-6.

Istirokhatun, T., Agustini, I. T., & Sudarno, S. (2016). Investigasi pengaruh kondisi lalu lintas dan aspek meteorologi terhadap konsentrasi pencemar SO2 di Kota Semarang. Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan, 13(1), 21-27.

Masito, A. (2018). Analisis Risiko Kualitas Udara Ambien (NO2 Dan SO2) dan Gangguan Pernapasan pada Masyarakat di Wilayah Kalianak Surabaya. Jurnal Kesehatan Lingkungan, 10(4), 394-401.

Ma'rufi, I. (2017). Analisis risiko kesehatan lingkungan (SO2, H2S, NO2 dan TSP) akibat transportasi kendaraan bermotor di Kota surabaya. MPI (Media Pharmaceutica Indonesiana), 1(4), 189-196.

Mijani, N., Firozjaei, M. K., Mijani, M., Khodabakhshi, A., Qureshi, S., Arsanjani, J. J., & Alavipanah, S. K. (2023). Exploring the effect of COVID-19 pandemic lockdowns on urban cooling: A tale of three cities. Advances in Space Research, 71(1), 1017-1033.

Muhammad, S., Long, X., & Salman, M. (2020). COVID-19 pandemic and environmental pollution: A blessing in disguise?. Science of the total environment, 728, 138820.

Parhusip, R., Shidiq, I. P. A., & Semedi, J. M. (2022). Dynamics of Urban Heat Island and Anthropogenic Emissions in Bekasi before and during COVID-19 Pandemic using Landsat 8 and Sentinel-5P. Journal of Information Technology and Computer Science, 7(2), 160-171.

Patwary, M. M., & Rahman, M. (2022). Assessing the Impact of COVID-19 Lockdown on Surface Urban Heat Island and Normalized Difference Vegetation Index in Dhaka Megacity, Bangladesh. Environmental Sciences Proceedings, 19(1), 37.

Prastyo, F. U., Nurjani, E., & Giyarsih, S. R. (2022). Distribusi Spasial Surface Urban Heat Island (SUHI) Kawasan Permukiman Perkotaan di Kota Yogyakarta. Media Komunikasi Geografi, 23(1), 73-83.

Purwanto, P., Astuti, I. S., Rohman, F., Utomo, K. S. B., & Aldianto, Y. E. (2022). Assessment of the dynamics of urban surface temperatures and air pollution related to COVID-19 in a densely populated City environment in East Java. Ecological Informatics, 71, 101809.

Serlina, Y. (2020). Pengaruh Faktor Meteorologi Terhadap Konsentrasi NO2 di Udara Ambien (Studi Kasus Bundaran Hotel Indonesia DKI Jakarta). Jurnal Serambi Engineering, 5(3).

Shikwambana, L., Kganyago, M., & Mhangara, P. (2021). Temporal analysis of changes in anthropogenic emissions and urban heat islands during COVID-19 restrictions in Gauteng province, South Africa. Aerosol and Air Quality Research, 21(9), 200437.

Slamet, JP. (2020, April 28). Dampak Positif Wabah Korona. Kompaspedia. Cited in https://kompaspedia.kompas.id/baca/infografik/poster/dampak-positif-wabah-korona [8 February 2023].

Sunarta, I. N., & Saifulloh, M. (2022). Spatial Variation of NO2 Levels during The COVID-19 Pandemic in The Bali Tourism Area. Geographia Technica, 17(1).

Tokairin, T., Kondo, H., Yoshikado, H., Genchi, Y., Ihara, T., Kikegawa, Y., ... & Asahi, K. (2006). Numerical study on the effect of buildings on temperature variation in urban and suburban areas in Tokyo. Journal of the meteorological Society of Japan. Ser. II, 84(5), 921-937.

Tursilowati, L. (2002). Urban heat island dan kontribusinya pada perubahan iklim dan hubungannya dengan perubahan lahan. In Seminar Nasional Pemanasan Global dan Perubahan Global. Fakta, mitigasi, dan adaptasi. Pusat Pemanfaatan Sains Atmosfer dan Iklim LAPAN (pp. 89-96).

Wijaya, I. K., & Mataram, I. M. (2016). The Day Great Penyepian in Bali Evidently Can to Reduce Air Pollution. International Journal of Engineering and Applied Sciences, 3(8), 257610.

Wijayanto, A. K., Rushayati, S. B., Hermawan, R., Setiawan, Y., & Prasetyo, L. B. (2020). Jakarta and Surabaya land surface temperature before and during the COVID-19 pandemic. Advances in Environmental Sciences, 12(3), 213-221.




DOI: https://doi.org/10.24114/tgeo.v12i2.49303

Article Metrics

Abstract view : 158 times
pdf - 10 times

Refbacks

  • There are currently no refbacks.


Copyright ©2020 Jurusan Pendidikan Geografi Fakultas Ilmu Sosial Universitas Negeri Medan dan Ikatan Geograf Indonesia (IGI)

Creative Commons License


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.