Comparison of Accuracy in Naïve Bayes and Random Forests in Classification of Liver Disease

Authors

DOI:

https://doi.org/10.24114/cess.v7i1.28888

Keywords:

Klasifikasi, Machine Learning, Naive Bayes, Random Forest, Liver

Abstract

Pada penelitian ini bertujuan untuk melakukan komparasi terhadap metode Naïve Bayes dan Random Forest dalam klasifikasi data pasien penyakit liver. Adapun data pengujian yang digunakan yaitu Indian Liver Patient Dataset (ILPD) yang diperoleh dari UCI Machine Learning Repository. Dataset tersebut memiliki 583 record data, 10 kriteria, dan 1 variable kelas serta dengan jumlah kelas sebanyak 2 kelas atribut, serta data set tersebut berjenis multivariate. Terdapat beberapa tahapan preprocessing yang dilakukan, antara lain normalisasi data yang diujikan, selanjutnya dilakukan analisis klasifikasi menggunakan metode naïvebayes dan random forest. Berdasarkan hasil pengujian yang dilakukan dalam memperoleh nilai akurasi perhitungan klasifikasi menggunakan Confusion Matrix, maka metode Random Forest memperoleh hasil yang terbaik yaitu dengan peroleh akurasi sebesar 70.60 % bila dibandingkan dengan Naïve Bayes yang hanya memperoleh akurasi sebesar 55.80 %. Sehingga Random Forest memiliki performa kinerja yang lebih unggul dalam perolehan akurasi yang dihasilkan dalam klasifikasi penyakit liver.

Author Biographies

Ahmadi Irmansyah Lubis, STMIK Triguna Dharma

Program Studi Sistem Informasi, STMIK Triguna Dharma Medan, Indonesia SINTA ID : 6765096Google Scholar : GxmrjkIAAAAJ

Umri Erdiansyah, STMIK Triguna Dharma

Program Studi Sistem Informasi, STMIK Triguna Dharma Medan, IndonesiaSINTA ID : 6763567Google Scholar : 7UduKZMAAAAJ

Rosma Siregar, STMIK Triguna Dharma

Program Studi Sistem Informasi, STMIK Triguna Dharma Medan, IndonesiaSINTA ID : 6769042Google Scholar : P60HhyAAAAAJ

References

M. Abdar, M. Zomorodi-Moghadam, R. Das, and I. H. Ting, "Performance analysis of classification algorithms on early detection of liver disease,". Expert Systems with Applications, vol. 67, pp. 239-251, 2017.

P. M. C. Abrianto, "PENERAPAN METODE K-MEANS CLUSTERING UNTUK PENGELOMPOKKAN PASIEN PENYAKIT LIVER," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 2, no. 2, pp. 247-255, 2018.

C. Y. Gobel, "Sistem Pakar Penyakit Liver Menggunakan K-Nearest Neighbors Algoritm Berbasis Website," ILKOM Jurnal Ilmiah, vol. 10, no. 2, pp. 152-159, 2018.

J. Han, J. Pei, and M. Kamber, "Data mining: concepts and techniques," Elsevier, 2011.

T. M. Connolly, and C. E. Begg, "Database systems: a practical approach to design, implementation, and management," Pearson Education, 2005

E. Rahmawati, "Analisa Komparasi Algoritma Naive Bayes Dan C4. 5 Untuk Prediksi Penyakit Liver," Jurnal Techno Nusa Mandiri, vol. 12, no. 2, pp. 125-136, 2015.

E. Pusporani, S. Qomariyah, and I. Irhamah, "Klasifikasi Pasien Penderita Penyakit Liver dengan Pendekatan Machine Learning," Inferensi, vol. 2, no. 1, pp. 25-32, 2019.

V. W. Siburian, and I. E. Mulyana, "Prediksi Harga Ponsel Menggunakan Metode Random Forest," In Annual Research Seminar (ARS), vol. 4, no. 1, pp. 144-147, 2019.

M. R. Khan, S. K. Padhi, B. N. Sahu, and S. Behera, "Non stationary signal analysis and classification using FTT transform and Naive Bayes classifier," 2015 IEEE Power, Communication and Information Technology Conference, PCITC 2015 - Proceedings, vol. 4, pp. 967“972, 2015.

M. Granik, and V. Mesyura, "Fake news detection using naive Bayes classifier," 2017 IEEE 1st Ukraine Conference on Electrical and Computer Engineering, UKRCON 2017 - Proceedings, pp. 900“903, 2017.

K. Netti, and Y. Radhika, "A novel method for minimizing loss of accuracy in Naive Bayes classifier," 2015 IEEE International Conference on Computational Intelligence and Computing Research, ICCIC 2015, pp. 1“4, 2015.

M. Neshat, M. Sargolzaei, A. Nadjaran, and A. Masoumi, "Hepatitis disease diagnosis using hybrid casebased reasoning and particle swarm optimization," International Scholarly Research Notices, 2012.

A. M. Siregar, and M. K. D. A. Puspabhuana, "Data Mining: Pengolahan Data Menjadi Informasi dengan RapidMiner," CV Kekata Group, 2017.

Downloads

Published

2021-12-27

How to Cite

Irmansyah Lubis, A., Erdiansyah, U., & Siregar, R. (2021). Comparison of Accuracy in Naïve Bayes and Random Forests in Classification of Liver Disease. CESS (Journal of Computer Engineering, System and Science), 7(1), 81–89. https://doi.org/10.24114/cess.v7i1.28888