Komparasi Kinerja CPU dan Memori dalam Proses Klasifikasi Malware Menggunakan Algoritma Random Forest pada Sistem Operasi Kali Linux 64-bit dan Ubuntu 64-bit

Achmad Luthfan Aufar Hindami, Dimas Rifqi Firmansyah, Christopher Ralin Anggoman, Aqwam Rosadi Kardian

Abstract


Machine learning telah menjadi aspek krusial dalam keamanan siber, khususnya dalam deteksi intrusi dan klasifikasi malware. Namun, penerapan teknik ini memerlukan alokasi sumber daya komputasi yang signifikan. Dalam konteks ini, sistem operasi memiliki peran krusial berkaitan dengan kemampuannya dalam mengelola sumber daya komputasi. Penelitian ini bertujuan untuk mengevaluasi dan membandingkan performa CPU dan memori dari dua sistem operasi populer, yaitu Kali Linux dan Ubuntu, dalam konteks komputasi klasifikasi malware menggunakan teknik dan algoritma machine learning untuk mengetahui sistem operasi dengan performa yang lebih baik. Keduanya diuji menggunakan model machine learning dan variasi dataset yang sama untuk klasifikasi malware menggunakan algoritma Random Forest. Analisis dilakukan dengan membandingkan persentase konsumsi CPU dan memori antar kedua sistem operasi. Berdasarkan hasil pengujian, ditemukan bahwa sistem operasi Kali Linux memiliki rata-rata penggunaan CPU yang lebih rendah sekitar 19,64%, dan penggunaan memori yang lebih rendah sekitar 0,06% dibandingkan dengan sistem operasi Ubuntu. Dengan demikian, dapat disimpulkan bahwa sistem operasi Kali Linux memiliki performa yang lebih baik daripada sistem operasi Ubuntu dalam hal konsumsi CPU dan memori dalam komputasi klasifikasi malware menggunakan teknik dan algoritma machine learning.


Keywords


kali linux; machine learning; malware; random forest; sistem operasi; ubuntu

Full Text:

PDF

References


M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science (1979), vol. 349, no. 6245, pp. 253–255, Jul. 2015, doi: 10.1126/science.aaa8415.

M. Molina, “Machine Learning for Sociology” 2019.

W. Nabi, A. Bansal, and B. Xu, “Applications of artificial intelligence and machine learning approaches in echocardiography,” Echocardiography, vol. 38, no. 6. Blackwell Publishing Inc., pp. 982–992, Jun. 01, 2021. doi: 10.1111/echo.15048.

T. Kabbani and F. E. Usta, “Predicting the Stock Trend Using News Sentiment Analysis and Technical Indicators in Spark,” Jan. 2022, [Online]. Available: http://arxiv.org/abs/2201.12283

Z. Zhang, H. Al Hamadi, E. Damiani, C. Y. Yeun, and F. Taher, “Explainable Artificial Intelligence Applications in Cyber Security: State-of-the-Art in Research.”

N. Milosevic, A. Dehghantanha, and K. K. R. Choo, “Machine learning aided Android malware classification,” Computers and Electrical Engineering, vol. 61, pp. 266–274, Jul. 2017, doi: 10.1016/j.compeleceng.2017.02.013.

M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning based android malware detection using real devices,” Comput Secur, vol. 89, Feb. 2020, doi: 10.1016/j.cose.2019.101663.

M. S. Malik, “Machine Learning in Malware Detection,” LGU International Journal for Electronic Crime Investigation, vol. 5, no. 3, pp. 29–36, 2021.

F. A. Kraemer, D. Palma, A. E. Braten, and D. Ammar, “Operationalizing Solar Energy Predictions for Sustainable, Autonomous IoT Device Management,” IEEE Internet Things J, vol. 7, no. 12, pp. 11803–11814, Dec. 2020, doi: 10.1109/JIOT.2020.3002330.

S. J. Lee et al., “IMPACT: Impersonation Attack Detection via Edge Computing Using Deep Autoencoder and Feature Abstraction,” IEEE Access, vol. 8, pp. 65520–65529, 2020, doi: 10.1109/ACCESS.2020.2985089.

P. Nalmpantis, R. Kalamatianos, K. Kordas, and K. Kermanidis, “Low resources prepositional phrase attachment,” in Proceedings - 14th Panhellenic Conference on Informatics, PCI 2010, 2010, pp. 78–82. doi: 10.1109/PCI.2010.34.

K. L. Lai Khine and T. T. Soe Nyunt, “Predictive analytics on high-dimensional big data using principal component regression (PCR),” in Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering, WCSE 2019 SPRING, International Workshop on Computer Science and Engineering (WCSE), 2019, pp. 148–153. doi: 10.18178/wcse.2019.03.025.

X. Zhou, J. Zhang, J. Wan, L. Zhou, Z. Wei, and J. Zhang, “Scheduling-Efficient Framework for Neural Network on Heterogeneous Distributed Systems and Mobile Edge Computing Systems,” IEEE Access, vol. 7, pp. 171853–171863, 2019, doi: 10.1109/ACCESS.2019.2954897.

S. Aridhi and E. Mephu Nguifo, “Big Graph Mining: Frameworks and Techniques,” Big Data Research, vol. 6. Elsevier Inc., pp. 1–10, Dec. 01, 2016. doi: 10.1016/j.bdr.2016.07.002.

J. Whitehill, G. Littlewort, I. Fasel, M. Bartlett, and J. Movellan, “Toward practical smile detection,” IEEE Trans Pattern Anal Mach Intell, vol. 31, no. 11, pp. 2106–2111, 2009, doi: 10.1109/TPAMI.2009.42.

A. Shawahna, S. M. Sait, and A. El-Maleh, “FPGA-Based accelerators of deep learning networks for learning and classification: A review,” IEEE Access, vol. 7. Institute of Electrical and Electronics Engineers Inc., pp. 7823–7859, 2019. doi: 10.1109/ACCESS.2018.2890150.

C. Y. Mansa Baidoo, W. Yaokumah, and E. Owusu, “Estimating Overhead Performance of Supervised Machine Learning Algorithms for Intrusion Detection,” International Journal of Information Technologies and Systems Approach, vol. 16, no. 1, Feb. 2023, doi: 10.4018/IJITSA.316889.

V. R. Dasari, M. S. B. Im, and L. Beshaj, “Solving machine learning optimization problems using quantum computers,” 2020. [Online]. Available: https://www.researchgate.net/publication/336197360

T. S. Gunawan, M. K. Lim, N. F. Zulkurnain, and M. Kartiwi, “On the review and setup of security audit using Kali Linux,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 11, no. 1. Institute of Advanced Engineering and Science, pp. 51–59, Jul. 01, 2018. doi: 10.11591/ijeecs.v11.i1.pp51-59.

J. Park and Y. I. Eom, “File Fragmentation from the Perspective of I/O Control The 14th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage).”

B. D. Merrill, A. T. Ward, J. H. Grose, and S. Hope, “Software-based analysis of bacteriophage genomes, physical ends, and packaging strategies,” BMC Genomics, vol. 17, no. 1, Aug. 2016, doi: 10.1186/s12864-016-3018-2.

S. Narayan, P. Shang, and N. Fan, “Performance evaluation of IPv4 and IPv6 on Windows Vista and Linux Ubuntu,” in Proceedings - International Conference on Networks Security, Wireless Communications and Trusted Computing, NSWCTC 2009, 2009, pp. 653–656. doi: 10.1109/NSWCTC.2009.368.

A. W. Daher, A. Rizik, M. Muselli, H. Chible, and D. D. Caviglia, “Porting rulex software to the raspberry pi for machine learning applications on the edge,” Sensors, vol. 21, no. 19, Oct. 2021, doi: 10.3390/s21196526.

F. Kanavati et al., “Weakly-supervised learning for lung carcinoma classification using deep learning,” Sci Rep, vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-020-66333-x.

Hemavati, V. S. Devi, and R. Aparna, “Multi-label learning by extended multi-tier stacked ensemble method with label correlated feature subset augmentation,” International Journal of Electrical and Computer Engineering, vol. 13, no. 3, pp. 3384–3397, Jun. 2023, doi: 10.11591/ijece.v13i3.pp3384-3397.

D. R. Cutler et al., “RANDOM FORESTS FOR CLASSIFICATION IN ECOLOGY,” 2007.

X. Fu, Y. Chen, J. Yan, Y. Chen, and F. Xu, “BGRF: A broad granular random forest algorithm,” Journal of Intelligent and Fuzzy Systems, vol. 44, no. 5, pp. 8103–8117, May 2023, doi: 10.3233/JIFS-223960.

E. V. A. Sylvester et al., “Applications of random forest feature selection for fine-scale genetic population assignment,” Evol Appl, vol. 11, no. 2, pp. 153–165, Feb. 2018, doi: 10.1111/eva.12524.

Y. Chen and R. Zhang, “Research on Credit Card Default Prediction Based on k- Means SMOTE and BP Neural Network,” Complexity, vol. 2021, 2021, doi: 10.1155/2021/6618841.

D. Ghatrehsamani, C. Denninnart, J. Bacik, and M. Amini Salehi, “The Art of CPU-Pinning: Evaluating and Improving the Performance of Virtualization and Containerization Platforms,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Aug. 2020. doi: 10.1145/3404397.3404442.

S. B. Mishra, “HANDBOOK OF RESEARCH METHODOLOGY,” 2017. [Online]. Available: https://www.researchgate.net/publication/319207471




DOI: https://doi.org/10.24114/cess.v9i1.53994

Article Metrics

Abstract view : 29 times
PDF - 15 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

CESS (Journal of Computer Engineering, System and Science)

Creative Commons License
CESS (Journal of Computer Engineering, System and Science) is licensed under a Creative Commons Attribution 4.0 International License