Comparison of Machine Learning Algorithms in Analyzing Public Opinion Sentiments Against Fuel Price Increases

Hanif Wira Saputra, Rahmaddeni Rahmaddeni, Fazri Fazri

Abstract


Twitter is a social media platform that is quite widely used by the world community, especially people in Indonesia. Twitter is one of the social media that provides information, one of which is the increase in the price of crude oil which was recorded at 105 US dollars per barrel. The increase in fuel prices has a negative impact on society, causing pros and cons. Based on these problems, the authors aim to compare the performance of the artificial neural network and naïve Bayes algorithms to determine the best model for sentiment analysis of fuel price hikes. The data used amounted to 1000 datasets in the form of text documents with labeling using the lexicon and split data 90:10, 80:20, 70:30 and 60:40 as a comparison of precision values. The application of word vectorization utilizes TF-IDF in assigning a weight value to each word. Based on the results of the experiments that have been carried out, it is found that the best algorithm using an artificial neural network is capable of producing an accuracy value of 87% for 1000 data on public opinion sentiment on fuel price hikes. Based on the evaluation results, the model built can categorize public opinion sentiment into positive sentiment, negative sentiment, and neutral sentiment automatically and the polarity of public sentiment tends to be positive towards the issue of the fuel price increase that occurred.  


Keywords


Analisis Sentimen; Artificial Neural Network; Lexicon; Naïve Bayes; TF-IDF

Full Text:

PDF

References


A. W. Kurniawan, Z. F. Nurhadi, H. Hendrawan, R. P. Damayanti, dan D. Hidayat, “Pengaruh Kalimat ‘Twitter Please Do Your Magic’ Terhadap Sikap Pengguna Twitter,” Jurnal Digital Media dan Relationship, vol. 3, no. 1, hlm. 8–23, 2021.

Rinanda T. G., “Literasi Media Di Twitter (Study Deskriptif Remaja Melalui Gerakan ’Twitter Please Do Your Magic’),” UNIVERSITAS ISLAM RIAU, Pekanbaru, 2021.

W. Wardani, S. Suriana, S. U. Arfah, Z. Zulaili, dan P. S. Lubis, “Dampak kenaikan Bahan Bakar Minyak (BBM) Terhadap Inflasi dan Implikasinya Terhadap Makroekonomi di Indonesia,” AFoSJ-LAS (All Fields of Science Journal Liaison Academia and Society), vol. 2, no. 3, hlm. 63–70, 2022.

S. Mujahidin, B. Prasetio, dan M. C. C. Utomo, “Implementasi Analisis Sentimen Masyarakat Mengenai Kenaikan Harga BBM Pada Komentar Youtube Dengan Metode Gaussian naïve bayes,” Voteteknika (Vocational Teknik Elektronika dan Informatika), vol. 10, no. 3, hlm. 17–24, 2022.

U. Kurniasih dan A. T. Suseno, “Analisis Sentimen Terhadap Bantuan Subsidi Upah (BSU) pada Kenaikan Harga Bahan Bakar Minyak (BBM),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 4, hlm. 2335–2340, 2022.

A. Alsaeedi dan M. Z. Khan, “A study on sentiment analysis techniques of Twitter data,” International Journal of Advanced Computer Science and Applications, vol. 10, no. 2, 2019.

V. K. S. Que, A. Iriani, dan H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi| Vol, vol. 9, no. 2, 2020.

K. Dashtipour, M. Gogate, A. Gelbukh, dan A. Hussain, “Extending persian sentiment lexicon with idiomatic expressions for sentiment analysis,” Soc Netw Anal Min, vol. 12, no. 1, hlm. 1–13, 2022.

N. Sucahyo, L. Nurlaela, dan R. R. Waryono, “Analisis Sentimen Masyarakat Jakarta Terhadap Kebijakan Perluasan Dan Perpanjangan Ganjil Genap di Media Sosial Twitter,” Jurnal Teknologi Informatika dan Komputer, vol. 7, no. 1, hlm. 97–111, 2021.

R. Bensoltane dan T. Zaki, “Towards Arabic aspect-based sentiment analysis: a transfer learning-based approach,” Soc Netw Anal Min, vol. 12, no. 1, hlm. 1–16, 2022.

L. Nemes dan A. Kiss, “Social media sentiment analysis based on COVID-19,” Journal of Information and Telecommunication, vol. 5, no. 1, hlm. 1–15, 2021.

F. Fungsiawan, “Kenaikan Tarif Ojek Online Berdampak Inflasi dan Penurunan Pendapatan Domestik Bruto (PDB): Increase in Online Ojek Tariffs Impact Inflation and Decrease in Gross Domestic Product (GDP),” CEMERLANG: Jurnal Manajemen dan Ekonomi Bisnis, vol. 2, no. 3, hlm. 268–274, 2022.

T. N. Fatyanosa dan F. A. Bachtiar, “Classification method comparison on Indonesian social media sentiment analysis,” dalam 2017 International Conference on Sustainable Information Engineering and Technology (SIET), 2017, hlm. 310–315.

R. Rasenda, H. Lubis, dan R. Ridwan, “Implementasi K-NN Dalam Analisa Sentimen Riba Pada Bunga Bank Berdasarkan Data Twitter,” Jurnal Media Informatika Budidarma, vol. 4, no. 2, hlm. 369–376, 2020.

E. S. Romaito dan M. K. Anam, “Rahmaddeni, and AN Ulfah,“,” Perbandingan Algoritma SVM Dan NBC Dalam Analisa Sentimen Pilkada Pada Twitter,” CSRID J, vol. 13, no. 3, hlm. 169–179, 2021.

A. N. Ulfah dan M. K. Anam, “Analisis Sentimen Hate Speech Pada Portal Berita Online Menggunakan Support Vector Machine (SVM),” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 7, no. 1, hlm. 1–10, 2020.

R. Mahendrajaya, G. A. Buntoro, dan M. B. Setyawan, “Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine,” KOMPUTEK, vol. 3, no. 2, hlm. 52–63, 2019.

M. K. Anam, M. I. Mahendra, W. Agustin, R. Rahmaddeni, dan N. Nurjayadi, “Framework for Analyzing Netizen Opinions on BPJS Using Sentiment Analysis and Social Network Analysis (SNA),” INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi, vol. 6, no. 1, hlm. 11–28, 2022.

F. Akbar, H. W. Saputra, A. K. Maulaya, M. F. Hidayat, dan R. Rahmaddeni, “Implementasi Algoritma Decision Tree C4. 5 dan Support Vector Regression untuk Prediksi Penyakit Stroke: Implementation of Decision Tree Algorithm C4. 5 and Support Vector Regression for Stroke Disease Prediction,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 2, no. 2, hlm. 61–67, 2022.

S. Rajasekaran dan G. A. V. Pai, Neural networks, fuzzy systems and evolutionary algorithms: Synthesis and applications. PHI Learning Pvt. Ltd., 2017.

L. Khanady, “Prediksi Harga Saham Dengan Menggunakan JST (Jaringan Syaraf Tiruan),” JURNAL ILMIAH INFORMATIKA, vol. 7, no. 01, hlm. 1–4, 2019.

M. Dennis, R. Rahmaddeni, F. Zoromi, dan M. K. Anam, “Penerapan Algoritma Naïve Bayes Untuk Pengelompokkan Predikat Peserta Uji Kemahiran Berbahasa Indonesia,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 2, hlm. 1183–1190, 2022.

M. M. Firman Tempola dan A. Khairan, “Perbandingan Klasifikasi Antara Knn Dan Naive Bayes Pada Penentuan Status Gunung Berapi Dengan K-Fold Cross Validation,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 5, no. 5, 2018.




DOI: https://doi.org/10.24114/cess.v8i1.41911

Article Metrics

Abstract view : 221 times
PDF - 232 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

CESS (Journal of Computer Engineering, System and Science)

Creative Commons License
CESS (Journal of Computer Engineering, System and Science) is licensed under a Creative Commons Attribution 4.0 International License

slot gacor slot