Model Prediksi Gangguan Tidur berdasarkan Beberapa Faktor menggunakan Machine Learning

Faradillah Faradillah, Muhammad Fadhiel Alie, Rian Rahmanda

Abstract


Gangguan tidur merupakan masalah kesehatan yang signifikan dan dapat mempengaruhi kualitas hidup individu. Penelitian ini bertujuan untuk mengembangkan model prediksi gangguan tidur menggunakan teknik machine learning dengan mempertimbangkan beberapa faktor risiko. Dataset yang digunakan merupakan data sekunder yang diperoleh dari Kaggle dan dianalisis menggunakan beberapa algoritma machine learning, termasuk model machine learning seperti logistic regression, decision tree dan gradient boosting. Hasil penelitian menunjukkan bahwa model Gradient Boosting menghasilkan akurasi prediksi tertinggi, dengan nilai akurasi 99% berdasarkan AUC – ROC Score. Faktor-faktor seperti usia (ages), durasi tidur (sleep duration), kategori BMI dan pekerjaan ditemukan sebagai prediktor yang paling signifikan. Temuan ini menunjukkan bahwa penggunaan machine learning dapat menjadi alat yang efektif dalam mengidentifikasi individu yang berisiko mengalami gangguan tidur, sehingga memungkinkan intervensi dini dan pengelolaan kesehatan yang lebih baik. Penelitian ini memberikan kontribusi penting dalam pemahaman tentang hubungan antara faktor-faktor risiko dan gangguan tidur serta potensi aplikasi machine learning dalam bidang melalui pemilihan model prediksi dengan akurasi terbaik.


Keywords


Gangguan tidur; Machine learning; Prediksi

Full Text:

PDF

References


J. Zhang et al., “Automatic detection of obstructive sleep apnea events using a deep CNN-LSTM model,” Comput Intell Neurosci, vol. 2021, 2021, doi: 10.1155/2021/5594733.

E. Urtnasan, J. U. Park, E. Y. Joo, and K. J. Lee, “Identification of Sleep Apnea Severity Based on Deep Learning from a Short-term Normal ECG,” J Korean Med Sci, vol. 35, no. 47, Dec. 2020, doi: 10.3346/jkms.2020.35.e399.

K. Deep, E. Urtnasan, J.-U. Park, E. Yeon Joo, and K.-J. Lee, “Citation: Convolutional Recurrent Model for Automatic Scoring Sleep Stages Based on Single-Lead ECG Signal. Deep Convolutional Recurrent Model for Automatic Scoring Sleep Stages Based on Single-Lead ECG Signal,” Diagnostics 2022, vol. 12, p. 1235, 2022, doi: 10.3390/diagnostics.

Y. K. Wang and C. Y. Chen, “Integrating Mobile Devices and Wearable Technology for Optimal Sleep Conditions,” Applied Sciences (Switzerland), vol. 13, no. 17, Sep. 2023, doi: 10.3390/app13179921.

M. A. Hamza et al., “Wearables-Assisted Smart Health Monitoring for Sleep Quality Prediction Using Optimal Deep Learning,” Sustainability (Switzerland), vol. 15, no. 2, Jan. 2023, doi: 10.3390/su15021084.

A. A. Hidayat, A. Budiarto, and B. Pardamean, “Long Short-Term Memory-based Models for Sleep Quality Prediction from Wearable Device Time Series Data,” in Procedia Computer Science, Elsevier B.V., 2023, pp. 1062–1069. doi: 10.1016/j.procs.2023.10.616.

M. Mega Santoni, N. Chamidah, and N. Matondang, “Prediction of Hypertension using Decision Tree, Naïve Bayes and Artificial Neural Networks in KNIME Analytics Platform,” 2020.

A. Arora, P. Chakraborty, and M. P. S. Bhatia, “Analysis of Data from Wearable Sensors for Sleep Quality Estimation and Prediction Using Deep Learning,” Arab J Sci Eng, vol. 45, no. 12, pp. 10793–10812, Dec. 2020, doi: 10.1007/s13369-020-04877-w.

C. Gao et al., “Sleep Duration/Quality with Health Outcomes: An Umbrella Review of Meta-Analyses of Prospective Studies,” Jan. 20, 2022, Frontiers Media S.A. doi: 10.3389/fmed.2021.813943.

A. H. Amalia, “Sistem Pakar Pembantu Diagnosa Penyakit Gangguan Tidur Dengan Metode Certainty Factor,” Skripsi, Universitas Muhammadiyah Ponorogo, 2021.

A. Hajj et al., “Impact of sleep disorders and other factors on the quality of life in general population a cross-sectional study,” Journal of Nervous and Mental Disease, vol. 207, no. 5, pp. 333–339, May 2019, doi: 10.1097/NMD.0000000000000968.

S. Suratna and A. Widarma, “Sistem Pakar Diagnosa Penyakit Insomnia Menggunakan Metode Fuzzy Berbasis Web,” Hello World Jurnal Ilmu Komputer, vol. 1, no. 1, pp. 53–64, May 2022, doi: 10.56211/helloworld.v1i1.12.

A. S. Zamani et al., “The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data,” J King Saud Univ Sci, vol. 35, no. 9, Dec. 2023, doi: 10.1016/j.jksus.2023.102927.

W. N. Alfi et al., “Hubungan Kualitas Tidur Dengan Tekanan Darah Pasien Hipertensi Di Puskesmas Mojolangu Kota Malang,” Jurnal Berkala Epidemiologi, pp. 25–36, 2018, doi: 10.20473/jbe.v6i1.2018.

R. Fernando and R. Hidayat, “Hubungan Lama Penggunaan Media Sosial Dengan Kejadian Insomnia Pada Mahasiswa Fakultas Ilmu Kesehatan Universitas Pahlawan Tuanku Tambusai Tahun 2020,” Jurnal Ners, vol. 4, no. 2, pp. 83–89, 2020.

N. A. ZALUKHU, “Hubungan Kualitas Tidur Dengan Kadar HBA1C Pada Penderita Diabetes Melitus Tipe 2 Di RSUD Dr. Pirngadi Medan Tahun 2019,” Skripsi, Universitas HKBP Nommensen, 2020.

S. Ha et al., “Predicting the Risk of Sleep Disorders Using a Machine Learning-Based Simple Questionnaire: Development and Validation Study,” J Med Internet Res, vol. 25, no. 1, Jan. 2023, doi: 10.2196/46520.

E. Fitri, “Analisis Perbandingan Metode Regresi Linier, Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah,” Journal of Applied Computer Science and Technology (JACOST), vol. 4, no. 1, pp. 2723–1453, 2023, doi: 10.52158/jacost.491.

A. Satria, R. M. Badri, and I. Safitri, “Prediksi Hasil Panen Tanaman Pangan Sumatera dengan Metode Machine Learning,” Digital Transformation Technology, vol. 3, no. 2, pp. 389–398, Sep. 2023, doi: 10.47709/digitech.v3i2.2852.

“Dataset.” Accessed: Jan. 02, 2024. [Online]. Available: https://www.kaggle.com/datasets/henryshan/sleep-health-and-lifestyle.

C. Sun, S. Hong, J. Wang, X. Dong, F. Han, and H. Li, “A systematic review of deep learning methods for modelling electrocardiograms during sleep,” Aug. 31, 2022, Institute of Physics. doi: 10.1088/1361-6579/ac826e.

M. A. Albqoor and A. M. Shaheen, “Sleep quality, sleep latency, and sleep duration: a national comparative study of university students in Jordan,” Springer Nature Switzerland, pp. 1–8, 2021.

C. Gao et al., “Sleep Duration/Quality with Health Outcomes: An Umbrella Review of Meta-Analyses of Prospective Studies,” Jan. 20, 2022, Frontiers Media S.A. doi: 10.3389/fmed.2021.813943.

Z. Zeng, W. Peng, and B. Zhao, “Improving the Accuracy of Network Intrusion Detection with Causal Machine Learning,” Security and Communication Networks, vol. 2021, 2021, doi: 10.1155/2021/8986243.

I. Wardhana, M. Ariawijaya, V. A. Isnaini, and R. P. Wirman, “Gradient Boosting Machine, Random Forest dan Light GBM untuk Klasifikasi Kacang Kering,” Jurnal Resti, vol. 6, no. 1, pp. 92–99, 2021.

D.- Andriansyah and Eka Wulansari Fridayanthie, “Optimization of Support Vector Machine and XGBoost Methods Using Feature Selection to Improve Classification Performance,” JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, vol. 6, no. 2, pp. 484–493, Jan. 2023, doi: 10.31289/jite.v6i2.8373.

J. Homepage et al., “MALCOM: Indonesian Journal of Machine Learning and Computer Science Comparison of K-Means and K-Medoids on Poor Data Clustering in Indonesia Perbandingan K-Means dan K-Medoids Pada Pengelompokan Data Miskin di Indonesia,” vol. 2, no. 2, pp. 35–41, 2022.

Y. H. Kao and B. Van Roy, “Learning a factor model via regularized PCA,” Mach Learn, vol. 91, no. 3, pp. 279–303, 2013, doi: 10.1007/s10994-013-5345-8.

M. A. Albqoor and A. M. Shaheen, “Sleep quality, sleep latency, and sleep duration: a national comparative study of university students in Jordan,” Sleep and Breathing, vol. 25, no. 2, pp. 1147–1154, Jun. 2021, doi: 10.1007/s11325-020-02188-w.

Z. Zhou, Y. Liu, H. Yu, and L. Ren, “The influence of machine learning-based knowledge management model on enterprise organizational capability innovation and industrial development,” PLoS One, vol. 15, no. 12 December, Dec. 2020, doi: 10.1371/journal.pone.0242253.




DOI: https://doi.org/10.24114/cess.v9i2.61068

Article Metrics

Abstract view : 68 times
PDF - 61 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

CESS (Journal of Computer Engineering, System and Science)

Creative Commons License
CESS (Journal of Computer Engineering, System and Science) is licensed under a Creative Commons Attribution 4.0 International License