PERENCANAAN KONDENSOR TIPE KOIL VERTIKAL UNTUK KONDENSASI UAP PIROLISA BIOMASSA TEMPURUNG KELAPA
DOI:
https://doi.org/10.24114/jip.v2i3.38125Abstract
Proses pirolisis sejatinya adalah proses pembakaran tidak langsung atau proses pemanasan terhadap biomassa pada suhu tinggi (250 “ 650) oC. Proses pirolisa menghasilkan uap panas atau sering disebut dengan uap pirolisis ataupun volatiles. Uap pirolisis akan berubah wujud menjadi cairan (condensate) bila didinginkan. Selain menghasilkan cairan juga menghasilkan gas yang dapat terbakar (producer gas). Tujuan kajian ini adalah mendesain dan menguji secara teoritis alat kondensasi asap pirolisis dari biomassa. Untuk proses kondensasi dibutuhkan alat perpindahan panas (heat exchanger) dimana panas laten yang dimiliki uap pirolisis harus segera dibuang (reject) menggunakan cairan pendingin (coolant) agar suhunya menurun hingga mendekati suhu saturasinya sehingga proses kondensasi dapat berlangsung. Kondensor tabung-koil spiral vertical (shell-coiled tubes) dapat menjadi solusi untuk masalah kondensasi uap panas pirolisis biomassa bila direncanakan dengan tepat. Kondensor jenis ini sangat simple dan mudah dalam hal maintenance. Merencanakan kondensor tipe tabung-koil berdasarkan analisis hidrodinamik membawa para perancang (engineer) semakin dekat dengan alat pendingin uap pirolisis dengan kinerja yang tinggi. Dari hasil analisis bahwa penambahan jumlah gulungan koil dapat meningkatkan efektifitas pendinginan.References
Garcia-Nunez, J., Pelaez-Samaniego, M., Garcia-Perez, M., Fonts, I., Abrego, J., Westerhof, R., & Garcia-Perez, M. (2017). Historical developments of pyrolysis reactors: a review. Energy & fuels, 31(6), 5751-5775.
Rozum, J. (2014). Smoking. Liquid Smoke (Smoke Condensate) Application. In M. Dikeman & C. Devine (Eds.), Encyclopedia of Meat Sciences (Second Edition) (pp. 315-320). Oxford: Academic Press.
Latumahina, F. S., Mardiatmoko, G., & Tjoa, M. (2021). Penggunaan Biopestisida Nabati untuk Pengendalian Hama Tanaman Kehutanan (Peluang Pengembangan Kelompok Tani): Penerbit Adab.
Chalermsan, Y., & Peerapan, S. (2009). Wood vinegar: by-product from rural charcoal kiln and its role in plant protection. Asian Journal of Food and Agro-Industry, 2(Special Issue).
Berrueta, V. M., Edwards, R. D., & Masera, O. R. (2008). Energy performance of wood-burning cookstoves in Michoacan, Mexico. Renewable Energy, 33(5), 859-870.
Illerup, J. B., Hansen, B. B., Lin, W., Nickelsen, J., Pedersen, V. H., Eskerod, B., & Dam-Johansen, K. (2020). Performance of an automatically controlled wood stove: Thermal efficiency and carbon monoxide emissions. Renewable Energy, 151, 640-647. doi: https://doi.org/10.1016/j.renene.2019.11.057
Rahbar, K., Mahmoud, S., Al-Dadah, R. K., Moazami, N., & Ashmore, D. (2017). Feasibility study of power generation through waste heat recovery of wood burning stove using the ORC technology. Sustainable Cities and Society, 35, 594-614.
Baharuddin, Simanjuntak, J.P., Daryanto, E., Tambunan, B.H., Hasan, H., Samsudin, A., % Syamsiro, M. (2022). Development of a Small-Scale Electricity Generation Plant Integrated on Biomass Carbonization: Thermodynamic and Thermal Operating Parameters Study. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 94 (1): p. 79-95. https://doi.org/10.37934/arfmts.94.1.7995
Simanjuntak, J.P., Samsudin, A., Syamsiro, M., Daryanto, E., & Tambunan, B.H. (2021). Thermal Energy Storage System from Household Wastes Combustion: System Design and Parameter Study. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 80 (2): p. 115-126. https://doi.org/10.37934/arfmts.80.2.115126
Simanjuntak, J. P., Al-attab, K., & Zainal, Z. (2019). Hydrodynamic flow characteristics in an internally circulating fluidized bed gasifier. Journal of Energy Resources Technology, 141(3). https://doi.org/10.1115/1.4041092
Simanjuntak, J. P., & Zainal, Z. A. (2015). Experimental study and characterization of a two-compartment cylindrical internally circulating fluidized bed gasifier. Biomass and Bioenergy, 77, 147-154. doi: https://doi.org/10.1016/j.biombioe.2015.03.023
Simanjuntak, J. P., Daryanto, E., Tambunan, B. H., Silaban. (2018). Producer gas production of Indonesian biomass in fixed-bed downdraft gasifier as an alternative fuel for internal combustion engines. Journal of Physics: Conference Series, 970 (1): p. 012019. https://doi.org/10.1088/1742-6596/970/1/012019
Wang, Z., Cao, J., & Wang, J. (2009). Pyrolytic characteristics of pine wood in a slowly heating and gas sweeping fixed-bed reactor. Journal of Analytical and Applied Pyrolysis, 84(2), 179-184. doi: https://doi.org/10.1016/j.jaap.2009.02.001
Yorgun, S., & Yıldız, D. (2015). Slow pyrolysis of paulownia wood: Effects of pyrolysis parameters on product yields and bio-oil characterization. Journal of Analytical and Applied Pyrolysis, 114, 68-78. doi: https://doi.org/10.1016/j.jaap.2015.05.003
Tambunan, B. H & Simanjuntak, J. P. (2018). Pyrolysis of Plastic Waste into The Fuel Oil. http://dx.doi.org/10.4108/eai.3-11-2018.2285610
Lamarche, P., Tazerout, M., Gelix, F., Köhler, S., Mati, K., & Paviet, F. (2013). Modelling of an indirectly heated fixed bed pyrolysis reactor of wood: Transition from batch to continuous staged gasification. Fuel, 106, 118-128. doi: https://doi.org/10.1016/j.fuel.2012.12.005
Tamburini, D., Cartwright, C. R., Gasson, P., Åucejko, J. J., & Leme, C. L. D. (2020). Using analytical pyrolysis and scanning electron microscopy to evaluate charcoal formation of four wood taxa from the caatinga of north-east Brazil. Journal of Analytical and Applied Pyrolysis, 151, 104909. doi: https://doi.org/10.1016/j.jaap.2020.104909
Wang, Z., Wang, F., Cao, J., & Wang, J. (2010). Pyrolysis of pine wood in a slowly heating fixed-bed reactor: Potassium carbonate versus calcium hydroxide as a catalyst. Fuel Processing Technology, 91(8), 942-950. doi: https://doi.org/10.1016/j.fuproc.2009.09.015
Wang, Z., J. Cao, and J. Wang, Pyrolytic characteristics of pine wood in a slowly heating and gas sweeping fixed-bed reactor. (2009) Journal of Analytical and Applied Pyrolysis, 84 (2): p. 179-184.
Kumar V.A., Thakur, L.S., Shankar, R., Mondal, P. (2019). Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products. Waste Management, 89: p. 224-235. https://doi.org/10.1016/j.wasman.2019.04.016
Wang, L., He, Y., Tang, C., Wang, Y., & Che, D. (2019). A novel design of rotary regenerative condensing heat exchanger for the dehydration from high humidity flue gas. International Journal of Heat and Mass Transfer, 131, 517-526. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.080
Gadkari, S., Fidalgo, B., & Gu, S. (2017). Numerical investigation of microwave-assisted pyrolysis of lignin. Fuel Processing Technology, 156, 473-484. doi: https://doi.org/10.1016/j.fuproc.2016.10.012
Salema, A. A., Ani, F. N., Mouris, J., & Hutcheon, R. (2017). Microwave dielectric properties of Malaysian palm oil and agricultural industrial biomass and biochar during pyrolysis process. Fuel Processing Technology, 166, 164-173. doi: https://doi.org/10.1016/j.fuproc.2017.06.006
Nhuchhen, D. R., Afzal, M. T., Dreise, T., & Salema, A. A. (2018). Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor. Biomass and Bioenergy, 119, 293-303. doi: https://doi.org/10.1016/j.biombioe.2018.09.035
Guzelciftci, B., Park, K.-B., & Kim, J.-S. (2020). Production of phenol-rich bio-oil via a two-stage pyrolysis of wood. Energy, 200, 117536.
Yunus, A.C., Heat and mass transfer: fundamentals and applications. 2019: McGraw-Hill Education.
Abdel-Rahman, Z. A., & Abdullah, G. H. (2007). a Study in Flow Characteristics of Liquid Falling Film in Spiral Tubes. Tikrit Journalof Engineering Sciences, 14(2), 86-10.