PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3
Abstract
ABSTRACT
Runge-Kutta method is a numerical method used to find the solution of an equation. This method seeks to obtain a higher degree of precision, and at the same time seeking to avoid the need of higher derivatives by evaluating the function f (x, y) at the selected point in each interval step. In this paper discussed the effect of changes in the value of the parameter (h) to the value of the error in the Runge-Kutta method Order-3. The equation to be discussed is a linear ordinary differential equation of the two levels that have been changed into a system of linear equations. In the research process was not found fixed parameter values to get the minimum error value, because each parameter has a value of error varied for each equation.
Keywords: Runge-Kutta, parameters, error.
Full Text:
PDFDOI: https://doi.org/10.24114/jmk.v3i2.8807
Article Metrics
Abstract view : 300 timesPDF - 571 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 KARISMATIKA: Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika dan Aplikasi
KARISMATIKA :
Kumpulan Artikel Ilmiah Informatika, Statistik, Matematika dan Aplikasi