Optimization of pretreatment in delignification of hyacinth biomass for ethanol production

Effendi Nawawi, Zainal Fanani, Fakhili Gulo

Abstract


Water hyacinth (Eichhornia crassipes) is one of the potential feedstocks for bioethanol production due to their higher cellulose content. It needs the optimization of pretreatment to remove lignin and release cellulose and hemicellulose from lignocellulosic complex. Pretreatment was done using sulfuric acid, sodium hydroxide, and calcium hypochlorite as soaking agents. Experiment was carried out at 121 °C for 15 minutes. Pretreatment with 1% sulfuric acid decreased lignin by 6.74%, 4.0% sodium hydroxide reduced lignin content by 11.23%, whereas pretreatment with 0.3% calcium hypochlorite removed lignin by 8.30% from original lignin content lignocellulosic substrate. Therefore, sodium hydroxide pretreatment showed highest efficacy in delignification processes, followed by calcium hypochlorite, and sulfuric acid pretreatments.

Keywords: Lignin reduction; Lignocellulose; Pretreatment; Water hyacinth


Full Text:

PDF

References


Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101, 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

Asgher, M., Ahmad, Z., & Iqbal, H. M. (2013). Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Industrial Crops and Products, 44, 488– 495. https://doi.org/10.1016/j.indcrop.2012.10.005

Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86, 2273–2282. https://doi.org/10.1016/j.apenergy.2009.03.015

Balat, M., Balat, H., & Oz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34, 551-573. https://doi.org/10.1016/j.pecs.2007.11.001

Cheah, W. Y., Sankaran, R., Show, P. L., Ibrahim, T. N., Chew, K. W., Culaba, A., & Chang, J.-S. (2020). Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Research Journal, 24, 1115-1127. https://doi.org/10.18331/BRJ2020.7.1.4

El-Zawawy, W. K., Ibrahim, M. M., Abdel-Fattah, Y. R., Soliman, N. A., & Mahmoud, M. M. (2011). Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydrate Polymers, 84, 865–871. https://doi.org/10.1016/j.carbpol.2010.12.022

Fuertez-Córdoba, J., Acosta-Pavas, J., & Ruiz-Colorado, A. (2021). Alkaline delignification of lignocellulosic biomass for the production of fermentable sugar syrups. DYNA, 88(218), 168-177. https://doi.org/10.7440/res64.2018.03

Ganguly, A., Chatterjeea, P. K., & Dey, A. (2012). Studies on ethanol production from water hyacinth – A review. Renew. Sustain. Energy Rev, 16, 966–972. https://doi.org/10.1016/j.rser.2011.09.018

García-Cubero, M., González-Benito, G., Indacoechea, I., Coca, M., & Bolado, S. (2009). Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresource Technology, 100, 1608–1613. https://doi.org/10.1016/j.biortech.2008.09.012

Guragain, Y. N., Coninck, J. D., Husson, F., Durand, A., & Rakshit, S. (2011). Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth. Bioresource Technology, 106, 4416–4424. https://doi.org/10.1016/j.biortech.2010.11.125

Harun, R., & Danquah, M. K. (2011). Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry, 46, 304-309. https://doi.org/10.1016/j.procbio.2010.08.027

Hendriks, A., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18. https://doi.org/10.1016/j.biortech.2008.05.027

Huang, H. J., Ramaswamy, S., Al-Dajani, W., Tschirner, U., & Cairncross, R. A. (2009). Effect of biomass species and plant size on cellulosic ethanol: A comparative process and economic analysis. Biomass and Bioenergy, 33(2), 234-246. https://doi.org/10.1016/j.biombioe.2008.05.007

Kim, I., Lee, B., Park, J.-Y., Choi, S.-A., & Han, J.-I. (2014). Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohydrate Polymers, 99, 563– 567. https://doi.org/10.1016/j.carbpol.2013.08.092

Li, T., & Takkellapati, S. (2018). The current and emerging sources of technical lignins and their applications. Biofuels, Bioprod. Bioref, 1-32. https://doi.org/10.1002/bbb.1913

Limayema, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38, 449-467. https://doi.org/10.1016/j.pecs.2012.03.002

Liu, C., & Wyman, C. (2003). The effect of flow rate of very dilute sulfuric acid on xylan, lignin, and total mass removal from corn stover. Ind. Eng. Chem. Res, 43(11), 2781–2788. https://doi.org/10.1021/ie030754x

Quintero, J. A., Rincón, L. E., & Cardona, C. A. (2011). Production of Bioethanol from Agroindustrial Residues as Feedstocks. In Biofuels: Alternative Feedstocks and Conversion Processes. Manizales, Colombia: Elsevier Inc. https://doi.org/10.1016/B978-0-12-385099-7.00011-5

Saricks, C., Santini, D., & Wang, M. (1999). Effects of fuel ethanol use on fuel-cycle energy and greenhouse gas emissions. Argonne National Laboratory, Center for Transportation Research, Energy Systems Division. Argonne, Illinois, USA: Argonne National Laboratory. https://doi.org/10.2172/4742

Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol Production from Agricultural Waste: An Overview. Renewable Energy, 26, 19-27. https://doi.org/10.1016/j.renene.2011.06.045

Sindhu, R., Kuttiraja, M., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandeay, A. (2011). Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresource Technology, 102(23), 10915-10921. https://doi.org/10.1016/j.biortech.2011.09.066

Singh, A., & Bishnoi, N. R. (2012). Optimization of ethanol production from microwave alkali pretreated rice straw using statistical experimental designs by Saccharomyces cerevisiae. Industrial Crops and Products, 37, 334– 341. https://doi.org/10.1016/j.indcrop.2011.12.033

Singh, A., & Bishnoi, N. R. (2013). Comparative study of various pretreatment techniques for ethanol production from water hyacinth. Industrial Crops and Products, 44, 283– 289. https://doi.org/10.1016/j.indcrop.2012.11.026

SNI 0494. (2008). Pulp - Cara uji bilangan kappa. Jakarta: Badan Standardisasi Nasional.

Suhardi, V. S., Prasai, B., Samaha, D., & Boopathy, R. (2013). Evaluation of pretreatment methods for lignocellulosic ethanol production from energy cane variety L 79-1002. International Biodeterioration & Biodegradation, 1-5. https://doi.org/10.1016/j.ibiod.2013.03.021

Tocco, D., Carucci, C., Monduzzi, M., Salis, A., & Sanjust, E. (2021). Recent developments in the delignification and exploitation of grass lignocellulosic biomass. ACS Suitainable Chem. Eng, 9(6), 2412-2432. https://dx.doi.org/10.1021/acssuschemeng.0c07266

Zheng, Y., Lee, C., Yu, C., Cheng, Y. S., Zhang, R., Jenkins, B. M., & Gheynst, J. V. (2013). Dilute acid pretreatment and fermentation of sugar beet pulp to ethanol. Applied Energy, 105, 1-7. https://doi.org/10.1016/j.apenergy.2012.11.070

Zhu, J. Y., Wang, G. S., Pan, X. J., & Gleisner, R. (2009). Specific surface for evaluating wood size-reduction and pretreatment efficiencies. Chemical Engineering Science, 64, 474–485. https://doi.org/10.1016/j.ces.2008.09.026




DOI: https://doi.org/10.24114/jpkim.v15i1.43652

Article Metrics

Abstract view : 234 times
PDF - 152 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Effendi Nawawi, Zainal Fanani, Fakhili Gulo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Pendidikan Kimia
Contact: +62 853-1769-2813
Email: jpkim.pps@unimed.ac.id

Jl. Willem Iskandar, Pasar V, Medan Estate, Medan City, North Sumatra Province, Postal Code 20221. Phone/fax: (061) 661 3365 / +62 852-7802-1981.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.