Application of K-Means Algorithm on Clustering Recipients of Non-Cash Food Assistance (NCFA)

Said Nanda Saputra, Elin Haerani, Jasril Jasril, Lola Oktavia, Fadhilah Syafria

Abstract


Persoalan Kemiskinan pada berbagai daerah Indonesia menjadi fokus perhatian. Program BPNT (Bantuan Pangan Non Tunai) bermaksud memangkas biaya pangan dan membagikan gizi yang sepadan terhadap KPM (Keluarga Penerima Manfaat). Penelitian ini menerapkan algoritma K-Means untuk menganalisis pola karakteristik penerima BPNT di Pekanbaru. Data yang digunakan berasal dari penelitian sebelumnya oleh Firza Syahputra dan dari Dinas Sosial Kota Pekanbaru tahun 2020-2021 dengan 732 data dan 41 parameter. Penerapan K-Means dilakukan melalui Google Colab. Melalui data mining dan metode clustering, ditemukan dua klaster dengan 666 data dalam klaster 1 dan 16 data dalam klaster 2. Evaluasi menggunakan Silhouette Score menunjukkan hasil yang baik, dengan nilai 0.9169796594018274. Penelitian ini berpotensi membantu pemerintah dalam mengambil keputusan yang efektif selama penyebaran bantuan pangan non tunai kepada rakyat yang membutuhkan. Dengan demikian, algoritma K-Means Clustering dapat mengidentifikasi pola karakteristik penerima BPNT dan membedakan kelompok yang layak dan tidak layak menerima bantuan.

Poverty issues in various parts of Indonesia are the focus of attention. The NCFA (Non-Cash Food Assistance) program's purpose are to lower food consumption and give Beneficiary Families (BF) a healthy diet. The k-means technique use in this study to assess the distinctive patterns of NCFA grantees in Pekanbaru. The data used comes from previous research by Firza Syahputra and from Social Affairs Office Pekanbaru in 2020-2021 with 732 data and 41 parameters. The application of k-means is done through Google Colab. Through data mining and clustering methods, two clusters were found with 666 data in cluster 1 and 16 data in cluster 2. Evaluation using Silhouette Score showed good results, with a value of 0.9169796594018274. This research has the potential to assist the government in making effective decisions in distributing non-cash food help people in need. For the result, the k-means Clustering technique is able to recognize the traits of NCFA recipients and identify groups that are and are not eligible for aid.


Keywords


BPNT; K-Means; Google Colab; Silhouette Score; Pola Karakteristik

Full Text:

PDF

References


R. Rusdiansyah, H. Supendar, and T. Tuslaela, “Data Mining using K-means method for feasibility selection of Non-cash food Assistance recipients in the Era of Covid-19,” SinkrOn, vol. 6, no. 1, pp. 25–33, Oct. 2021, doi: 10.33395/sinkron.v6i1.11101.

D. P. Anwar, N. U. Ati, and R. Pindahanto, “Implementasi Program Bantuan Pangan Non Tunai (Bpnt) Dinas Sosial Dalam Menanggulangi Kemiskinan Di Kelurahan Sisir Kecamatan Batu Kota Batu,” vol. 14, no. 3, pp. 1–7, 2020.

Parjito and Permata, “Penerapan Data Mining untuk Clustering Data Penduduk Miskin Menggunakan Metode K-Means,” 2021.

M. Hidayat Panuntun Muslim, J. Administrasi Publi, F. Eriyanti, dan Adil Mubarak SIP, and Ms. Jurusan Administrasi Publi, “jmiap Jurnal ilmu administrasi publik Implementasi Program Bantuan Pangan Non Tunai (BPNT) Di Kecamatan Kuranji Kota Padang,” 2019.

E. Y. Yunus, “Implementasi Program Bantuan Pangan Non Tunai (BPNT) Di Kecamatan Kanigaran Kota Probolinggo,” Reformasi, vol. 9, no. 2, p. 138, Sep. 2019, doi: 10.33366/rfr.v9i2.1454.

S. Ghousi Pratama, A. Mahmudi, and S. Achmadi, “Klasifikasi Penentuan Penerima Bantuan Pangan Non Tunai Menggunakan Metode K-Means Clustering,” 2020.

P. Julianto, “Implementasi Program Bantuan Pangan Non Tunai (BPNT) Di Kecamatan Sitinjau Laut Kabupaten Kerinci,” 2020.

D. Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Teknik Pada Jurusan Teknik Informatika Oleh, “Tugas Akhir.”

G. Münz, S. Li, and G. Carle, “Traffic Anomaly Detection Using K-Means Clustering.”

Y. Aprilia, P. Kartikasari, Y. A. Pranoto, and D. Rudhistiar, “Penerapan Metode K-Modes Untuk Proses Penentuan Penerima Bantuan Langsung Tunai (Blt),” 2021.

Y. Amri, A. L. Fadhilah, Fatmawati, N. Setiani, and S. Rani, “Analysis Clustering of Electricity Usage Profile Using K-Means Algorithm,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jan. 2016. doi: 10.1088/1757-899X/105/1/012020.

Y. Radana Sembiring, R. Winanjaya, S. Tunas Bangsa, S. Utara, and I. A. Jln Sudirman Blok No, “Implementasi Data Mining Dalam Mengelompokkan Jumlah Penduduk Miskin Berdasarkan Provinsi Menggunakan Algoritma K-Means,” 2021. [Online]. Available: https://www.bps.go.id

A. A. Aldino, D. Darwis, A. T. Prastowo, and C. Sujana, “Implementation of K-Means Algorithm for Clustering Corn Planting Feasibility Area in South Lampung Regency,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jan. 2021. doi: 10.1088/1742-6596/1751/1/012038.

Y. Ratna Sari, A. Sudewa, D. Ayu Lestari, and T. Ika Jaya, “Penerapan Algoritma K-Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan RapidMiner,” 2020.

E. Irfiani, S. Sulistia Rani, S. Nusa Mandiri Jl Kramat Raya No, and J. Pusat, “Algoritma K-Means Clustering untuk Menentukan Nilai Gizi Balita,” vol. 6, no. 4, pp. 17–27, 2018.

N. Dwitri et al., “Penerapan Algoritma K-Means Dalam Menentukan Tingkat Penyebaran Pandemi Covid-19 Di Indonesia,” Jurnal Teknologi Informasi, vol. 4, no. 1, 2020.

A. Arif, R. Dwi Christyanti, and U. Kaltara, “Clustering Calon Penerima Zakat Menggunakan Metode K-Means (Ratna Dwi Christyanti) (Studi Kasus di Provinsi Kalimantan Utara),” 73 SMARTICS Journal, vol. 8, no. 2, pp. 73–79, 2022, doi: 10.21067/10.21067/smartics.v8i2.7531.

A. Bastian, H. Sujadi, and G. Febrianto, “Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka).”

N. H. Harani, C. Prianto, and F. A. Nugraha, “Segmentasi Pelanggan Produk Digital Service Indihome Menggunakan Algoritma K-Means Berbasis Python,” Jurnal Manajemen Informatika (JAMIKA), doi: 10.34010/jamika.v10i2.

M. Khandava Mulyadien and U. Enri, “Algoritma K-Means Untuk Pengelompokan Bantuan Langsung Tunai (BLT),” Jurnal Ilmiah Wahana Pendidikan, vol. 2022, no. 12, pp. 198–210, doi: 10.5281/zenodo.6944517.




DOI: https://doi.org/10.24114/cess.v8i2.48026

Article Metrics

Abstract view : 270 times
PDF - 152 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

CESS (Journal of Computer Engineering, System and Science)

Creative Commons License
CESS (Journal of Computer Engineering, System and Science) is licensed under a Creative Commons Attribution 4.0 International License

slot gacor slot