Membandingkan Analisa Kesalahan Metode K-Means Clustering dan Canopy K-Means Clustering Dengan Data Gambar Terfilter
Abstract
Pada penelitian ini menganalisa kesalahan yang diperoleh pada data pembelajaran pada data gambar dengan membandingkan metode K-Means Clustering dan metode Canopy K-Means Clustering. Data yang digunakan adalah data gambar yang diujikan pada aplikasi yang dibangun dan menelaah nilai kesalahan pada setiap iterasi. Analisa kesalahan dengan memahami karakteristik formula pada metode K-Means Clustering dan Canopy K-Means Clustering dan menganalisa angka kesalahan berdasarkan formula kedua metode dengan demikian maka karakteristik perolehan error pada metode Canopy K-Means Clustering diperoleh berdasarkan karakteristik formula dari metode tersebut. Dari hasil beberapa uji coba dengan dataset yang data berbeda maka diperoleh rata-rata bahwa metode Canopy K-Means Clustering memiliki nilai kesalahan lebih sedikit sejumlah 0,0264% dibandingkan metode K-Means Clustering dengan Euclidean distance dan rata-rata keberhasilan 85% sesuai kelompok.
Keywords
Full Text:
PDFReferences
X.Lin, J.Xu, “Road Network Partitioning Method Based on Canopy K- Means Clustering Algorithm”, Archives of Transport, Volume 54 Issue 2, 95-106, 2020.
M. Darwis, L. H. Hasibuan, M. Firmansyah, N. Ahady, R. Tiaharyadini, “Implementation of K-Means Clustering Algorithm in Mapping the Groups of Graduated or Dropped-out Students in the Management Department of the National University”, JISA (Jurnal Informatika dan Sains), Vol. 04, No. 01, June 2021.
M. Harahap, A. W. D. R. Zamili, M. A. Arvansyah, E. F. Saragih, S. Rajen, A. M. Husein, “K- Means Clustering Algorithm Approach in Clustering Data on Cocoa Production Results in the Sumatra Region”, JURNAL RESTI (Rekayasa Sistem dan Teknologi Informasi)
Vol. 6 No. 6 (2022) 905 - 910.
I. B. G. Sarasvananda, R. Wardoyo, A. K. Sari, “The K-Means Clustering Algorithm with Semantic Similarity to Estimate the Cost of Hospitalization”, IJCCS (Indonesian Journal of
Computing and Cybernetics Systems) Vol.13, No.4, October 2019, pp. 313-322.
I. A. Mulyo, J. Heikal, “Customer Clustering Using The K-Means Clustering Algorithm in Shopping Mall in Indonesia”, Management Analysis Journal 365-371, ISSN 2252-6552.
H. Zhao, “Design and Implementation of an Improved K-Means Clustering Algorithm”, Hindawi Mobile Information Systems Volume 2022, Article ID 6041484.
C. Wu, B. Yan, R. Yu, B. Yu, X. Zhou, Y. Yu, N. Chen, “k-Means Clustering Algorithm and Its Simulation Based on Distributed Computing Platform”, Hindawi Complexity
Volume 2021, Article ID 9446653.
N. S. Sagheer, S. A. Yousif, Canopy with k-means clustering algorithm for big data analytics, https://doi.org/10.1063/5.0042398, 2021.
R. Ananda, “Silhouette Density Canopy K-Means for Mapping the Quality of Education Based on the Results of the 2019 National Exam in Banyumas Regency”
, KHAZANAH INFORMATIKA, Vol. 5 No. 2, December 2019.
S. Sabena, Dr. P. Yogesh, L. SaiRamesh, Image Retrieval using Canopy and Improved K mean
Clustering, International Conference on Emerging Technology Trends (ICETT) 2011.
S. Ambika, G. Kavitha,” Overcoming the Defects of K-Means Clustering by using Canopy
Clustering Algorithm”, IJSRD - International Journal for Scientific Research & Development| Vol. 4, Issue 05, 2016.
C. Yuan, H. Yang, “Research on K-Value Selection Method of K-Means Clustering Algorithm”, MDPI Journal 2019, 2, 16; doi:10.3390/j2020016.
M. Alian, G. Al-Naymat, “Questions Clustering Using Canopy-K-means and Hierarchical-K
means Clustering”, Journal of Information Technology, and is available online at
https://doi.org 10.1007/s41870-022-01012-w / .
M. Wu, Z. Li, J. Chen, Q. Min, T. Lu, A Dual Cluster-Head Energy-Efficient Routing Algorithm Based on Canopy Optimization and K-Means for WSN, Sensors 2022, 22, 9731.
K. P. Sinaga, M.S. Yang, Unsupervised K-Means Clustering Algorithm, Digital Object Identifier 10.1109/ACCESS.2020.2988796.
R.C. Gonzalez, R. E. Woods, Digital Image Processing Third Edition, Digital Image Processing Third Edition, Pearson Education, 2008.
https://paperswithcode.com/dataset/x-wines.
DOI: https://doi.org/10.24114/cess.v9i1.50978
Article Metrics
Abstract view : 138 timesPDF - 119 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
CESS (Journal of Computer Engineering, System and Science)
CESS (Journal of Computer Engineering, System and Science) is licensed under a Creative Commons Attribution 4.0 International License