Akurasi Naïve Bayes Untuk Analisis Sentimen Twitter Berdasarkan Split Data
Abstract
Batasan usia calon presiden dan calon wakil presiden menjadi salah satu isu yang hangat diperbincangkan menjelang Pemilihan Presiden dan Wakil Presiden di tahun 2024, terutama di media sosial Twitter. Opini pengguna Twitter tentang isu ini beragam, ada yang positif, negatif, dan netral. Untuk mengetahui sentimen tweet tersebut positif, negatif, atau netral, diperlukan pembelajaran mesin yang dapat mengklasifikasikan tweet dengan cepat. Naive Bayes adalah metode klasifikasi teks yang memiliki kecepatan pemrosesan dan akurasi yang cukup tinggi apabila diterapkan pada data yang banyak, besar, dan beragam. Sebelum data tweet diklasifikasikan, data tersebut harus melalui beberapa proses, seperti scraping data, prepocessing, dan pembobotan kata. Penelitian ini bertujuan untuk menemukan rasio pembagian data yang paling optimal untuk meningkatkan akurasi model klasifikasi naive bayes dalam menganalisis sentimen data tweet. Data tweet didapatkan sebanyak 2023 data dari dua keyword, penelitian ini menunjukkan bahwa sentimen negatif mendominasi dengan persentase 91,5%, diikuti oleh sentimen positif sebesar 5,9%, dan sentimen netral sebesar 2,5%. Dari tiga rasio split data yang diuji, rasio split data 90:10 menghasilkan performa terbaik, yaitu Accuracy 86%, Precission 100%, Recall 66%, dan F1-Score 80%.
Keywords
Full Text:
PDFReferences
S. N. J. Fitriyyah, N. Safriadi, and E. E. Pratama, “Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” J. Edukasi dan Penelit. Inform., vol. 5, no. 3, p. 279, 2019, doi: 10.26418/jp.v5i3.34368.
N. Cahyono and Dewi Setiyawati, “Analisis Sentimen Pengguna Sosial Media Twitter Terhadap Perokok Di Indonesia,” Indones. J. Comput. Sci., vol. 12, no. 1, pp. 262–272, 2023, doi: 10.33022/ijcs.v12i1.3154.
A. Mustofa and R. Novita, “Klasifikasi Sentimen Masyarakat Terhadap Pemberlakuan Pembatasan Kegiatan Masyarakat Menggunakan Text Mining Pada Twitter,” Build. Informatics, Technol. Sci., vol. 4, no. 1, pp. 200–208, 2022, doi: 10.47065/bits.v4i1.1628.
S. Kurniawan, W. Gata, D. A. Puspitawati, I. K. S. Parthama, H. Setiawan, and S. Hartini, “Text Mining Pre-Processing Using Gata Framework and RapidMiner for Indonesian Sentiment Analysis,” IOP Conf. Ser. Mater. Sci. Eng., vol. 835, no. 1, 2020, doi: 10.1088/1757-899X/835/1/012057.
R. Lasepa, S. Riyadi, S. Ramadhan, and D. D. Saputra, “Sentiment Analysis Terhadap Perspektif Warganet Atas Tragedi Kanjuruhan Malang di Twitter Menggunakan Naïve Bayes Classifier,” vol. 10, no. 1, pp. 45–53, 2023, doi: https://doi.org/10.31294/inf.v10i1.14546.
R. Kosasih and A. Alberto, “Sentiment analysis of game product on shopee using the TF-IDF method and naive bayes classifier,” Ilk. J. Ilm., vol. 13, no. 2, pp. 101–109, 2021, doi: 10.33096/ilkom.v13i2.721.101-109.
F. Koto and G. Y. Rahmaningtyas, “Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs,” Proc. 2017 Int. Conf. Asian Lang. Process. IALP 2017, vol. 2018-Janua, no. December, pp. 391–394, 2017, doi: 10.1109/IALP.2017.8300625.
D. Pajri, Y. Umaidah, and T. N. Padilah, “K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia,” vol. 6, pp. 242–253, 2020, doi: http://dx.doi.org/10.28932/jutisi.v6i2.2658.
L. O. Sihombing, H. Hannie, and B. A. Dermawan, “Sentimen Analisis Customer Review Produk Shopee Indonesia Menggunakan Algortima Naïve Bayes Classifier,” Edumatic J. Pendidik. Inform., vol. 5, no. 2, pp. 233–242, 2021, doi: 10.29408/edumatic.v5i2.4089.
L. Ardiani, H. Sujaini, and T. Tursina, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak,” J. Sist. dan Teknol. Inf., vol. 8, no. 2, p. 183, 2020, doi: 10.26418/justin.v8i2.36776.
E. P. Nirwandani, Indriati, and R. C. Wihandika, “Analisis Sentimen Pada Ulasan Pengguna Aplikasi Mandiri Online Menggunakan Metode Modified Term Frequency Scheme Dan Naïve Bayes,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 3, pp. 1039–1047, 2021.
Merinda Lestandy, Abdurrahim Abdurrahim, and Lailis Syafa’ah, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 802–808, 2021, doi: 10.29207/resti.v5i4.3308.
V. O. Tama, Y. Sibaroni, and Adiwijaya, “Labeling Analysis in the Classification of Product Review Sentiments by using Multinomial Naive Bayes Algorithm,” J. Phys. Conf. Ser., vol. 1192, no. 1, 2019, doi: 10.1088/1742-6596/1192/1/012036.
DOI: https://doi.org/10.24114/cess.v9i1.55010
Article Metrics
Abstract view : 92 timesPDF - 90 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
CESS (Journal of Computer Engineering, System and Science)
CESS (Journal of Computer Engineering, System and Science) is licensed under a Creative Commons Attribution 4.0 International License