The effect of temperature and pyrolysis time of plastic waste in producing methane

Holisha Widiyanto, Boima Situmeang, Dina Alva Prastiwi, Ninik Triayu Susparini, Isna Laitusholihah

Abstract


Plastic waste is a major environmental problem due to its widespread presence and lack of economic value. Pyrolysis is a process that can decompose plastic waste and produce methane gas, liquid, and solid products. This study aimed to investigate the factors that affect methane gas production and the amount of methane gas produced during the pyrolysis of various plastics, including a black plastic bag and plastic with aluminium foil. The results showed that the aluminium foil plastic produced more methane gas than the black bag, with optimal gas content at 7.74% for the aluminium foil plastic and 3.48% for the black bag. The type of plastic, time, and temperature all significantly affected the yield of methane gas produced. In addition, the interaction between variables in plastic type, time and temperature greatly affects the yield of methane gas (CH4) obtained, because the type of plastic F count (2904) is higher than F table 0.05 (4.00), at temperature F count (5449) is greater than F table 0.05 (2.76), when F count (746) is greater than F table 0.05 (2.76). In conclusion, the snack foil produced more methane gas than the black bag because it was made of low-density polyethylene and contained aluminium ions that catalysed the decomposition of the material, resulting in an increase in the amount of methane gas produced.

Keywords: Methane gas; Pyrolysis; Plastic; Waste


Full Text:

PDF

References


Bokov, D., Jalil, A.T., Chupradit, S., Suksatan, W., Ansari, M.J., Shewael, I.H., Valiev, G.H., & Kianfar, E. (2021). Nanomaterial by sol-gel method: synthesis and application. Advances in Materials Science and Engineering, 2021, 5102014. https://doi.org/10.1155/2021/5102014

Fuchs, A., Lyautey, E., Montuelle, B., & Casper, P. (2016). Effects of increasing temperatures on methane concentrations and methanogenesis during experimental incubation of sediments from oligotrophic and mesotrophic lakes. Journal of Geophysical Research: Biogeosciences, 121(5), 1394–1406. https://doi.org/10.1002/2016jg003328

Harefa, N., Gulo, A., & Silaban, S. (2021). Analysis of BOD and COD levels for home industry wastewater: A case study in a sewage streams. Jurnal Pendidikan Kimia, 13(1), 38-47. https://doi.org/10.24114/jpkim.v13i1.24142

Juliastuti, R. (2013). Pembuatan stirena dari limbah plastik dengan metode pirolisis. Jurnal Teknik Pomits, 2(1), 1-3.

Kholidah, N., Faizal, M., & Said, M. (2018). Polystyrene plastic waste conversion into liquid fuel with catalytic cracking process using Al2O3 as catalyst. Science and Technology Indonesia, 3(1), 1-6. https://doi.org/10.26554/sti.2018.3.1.1-6

Kida, M., Ziembowicz, S., & Koszelnik, P. (2022). CH4 and CO2 Emissions from the decomposition of microplastics in the bottom sediment—preliminary studies. Environments, 9(7), 91. https://doi.org/10.3390/environments9070091

Nasrun, N., Kurniawan, E., & Sari, I. (2017). Pengolahan limbah kantong plastik jenis kresek menjadi bahan bakar menggunakan proses pirolisis. Jurnal Energi Elektrik, 4(1), 1-5. https://doi.org/10.29103/jee.v4i1.11

Naufan, F. (2016). Desain alat pirolisis untuk mengonversi limbah plastik hdpe menjadi bahan bakar. Fakultas Teknologi Pertanian Institut Pertanian Bogor Bogor, p.1-39. http://repository.ipb.ac.id/handle/123456789/84027

Praputri, E., Mulyazmi, M., Sari, E., & Martynis, M. (2016).

Pengolahan limbah plastik polypropylene sebagai bahan bakar minyak (BBM) dengan proses pyrolysis. Seminar Nasional Teknik Kimia – Teknologi Oleo Petro Kimia Indonesia, p. 159-168. http://repository.unri.ac.id/xmlui/handle/123456789/8862

Rachmawati, Q., & Herumurti, W. (2015). Pengolahan sampah secara pirolisis dengan variasi rasio komposisi sampah dan jenis plastik. Jurnal Teknik ITS, 4(1), D27-D29-D29.

Royer S-J, Ferrón S, Wilson ST, Karl DM (2018) Production of methane and ethylene from plastic in the environment. PLoS ONE 13(8): e0200574. https://doi.org/10.1371/journal.pone.0200574

Salwan, F.L., Martono, D.H., Wahyono, S., Wisoyodharma, L.A. (2015). Sistem pengelolaan limbah plastik indonesia. Jurnal Teknologi Lingkungan, 6(1), 311-318. https://doi.org/10.29122/jtl.v6i1.330

Thorat, P. V., Warulkar, S., & Sathone, H. (2013). Thermofurl—“Pyrolysis of waste plastic to produce liquid hydrocarbons”. Advances in Polymer Science and Technology, 3(1), 14-18.

Wardhana, P.BW., & Saptoadi, H. (2016). Konversi limbah plastik polietilen menjadi bahan bakar dengan metode pirolisis. Jurnal DISPROTEK,7(1), 1-4. https://doi.org/10.34001/jdpt.v7i1.354




DOI: https://doi.org/10.24114/jpkim.v14i3.38984

Article Metrics

Abstract view : 216 times
PDF - 127 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Holisha Widiyanto, Boima Situmeang, Dina Alva Prastiwi, Ninik Triayu Susparini, Isna Laitusholihah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Pendidikan Kimia
Contact: +62 853-1769-2813
Email: jpkim.pps@unimed.ac.id

Jl. Willem Iskandar, Pasar V, Medan Estate, Medan City, North Sumatra Province, Postal Code 20221. Phone/fax: (061) 661 3365 / +62 852-7802-1981.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.