Unveiling ZrO2/natural zeolite catalytic performance on hydrocracking palm oil mill effluent residue

Junifa Layla Sihombing, Herlinawati Herlinawati, Ahmad Nasir Pulungan, Agus Kembaren, Gimelliya Saragih, Harmileni Harmileni, Rahayu Rahayu, Ary Anggara Wibowo

Abstract


Palm oil mill effluent (POME) is the largest liquid waste from crude palm oil production. This liquid waste still contains a lot of chemical components, solid deposits, and oil which is dangerous if released directly into the environment. The residual oil and grease components contained in POME can be further extracted and converted into fuel fractions. This study investigates the conversion of residual oil from POME into fuel fractions through hydrocracking. A ZrO2/Sarulla natural zeolite (SNZ) catalyst was used, characterized by a particle size of 1-1.5 µm, a surface area of 73.3 m2/g, a pore volume of 0.161 cc/g, and a pore diameter of 3.35 nm. The effect of catalyst mass was studied, with the total conversion increasing to a certain extent with increasing catalyst mass, however, an increase in coke formation decreased the product yield. The highest gasoline fraction selectivity was obtained with a catalyst mass of 0.09 wt% (~42%), while the kerosene fraction was most obtained with a catalyst mass of 0.15 wt% (~40%). The liquid product with a catalyst mass of 0.15 wt% had the highest HHV of 44.2 MJ/kg, a 12% increase from the HHV of POME oil residue (39.4 MJ/kg). The results demonstrate the potential of using residual oil from POME as a source for fuel production and the use of natural zeolite-based catalysts as hydrocracking catalysts.

Keywords: Biofuel; Hydrocracking; Natural zeolite; Oil extracted; Palm oil mill effluent


Full Text:

PDF

References


da Costa-Serra, J. F., Cerdá-Moreno, C., & Chica, A. (2020). Zeolite-supported Ni catalysts for CO2 methanation: Effect of zeolite structure and Si/Al ratio. Applied Sciences (Switzerland), 10(15). https://doi.org/10.3390/app10155131

Davies, E., Deutz, P., & Zein, S. H. (2022). Single-step extraction–esterification process to produce biodiesel from palm oil mill effluent (POME) using microwave heating: a circular economy approach to making use of a difficult waste product. Biomass Conversion and Biorefinery, 12(7), 2901–2911. https://doi.org/10.1007/s13399-020-00856-1

Duongbia, N., Kannari, N., Sato, K., Takarada, T., & Chaiklangmuang, S. (2022). Production of bio-based chemicals from palmitic acid by catalytic hydrotreating over low-cost Ni/LY char and limonite catalysts. Alexandria Engineering Journal, 61(4), 3105–3124. https://doi.org/10.1016/j.aej.2021.08.037

Gea, S., Haryono, A., Andriayani, A., & Sihombing, J. L. (2020). The stabilization of liquid smoke through hydrodeoxygenation over nickel catalyst loaded on Sarulla natural zeolite. Applied Sciences, 10, 1–17.

Gea, S., Irvan, I., Wijaya, K., Nadia, A., Pulungan, A. N., Sihombing, J. L., & Rahayu, R. (2022). Bio-oil hydrodeoxygenation over acid activated-zeolite with different Si/Al ratio. Biofuel Research Journal, 9(2), 1630–1639. https://doi.org/10.18331/brj2022.9.2.4

Hasanudin, H., Putri, Q. U., Agustina, T. E., & Hadiah, F. (2022). Esterification of free fatty acid in palm oil mill effluent ussulfated carbon-zeolite composite catalyst. Pertanika Journal of Science and Technology, 30(1), 377–395. https://doi.org/10.47836/pjst.30.1.21

Hasanudin, H., & Rachmat, A. (2016). Production of biodiesel from esterification of oil recovered from palm oil mill effluent (POME) sludge using tungstated-zirconia composite catalyst. Indonesian Journal of Fundamental and Applied Chemistry, 1(2), 42–46. https://doi.org/10.24845/ijfac.v1.i2.42

Hasanudin, Said, M., Faizal, M., Dahlan, M. H., & Wijaya, K. (2012). Hydrocracking of oil residue from palm oil mill effluent to biofuel. Sustainable Environment Research, 22(6), 395–400.

Huang, C., Zhu, C., Zhang, M., Lu, Y., Wang, Q., Qian, H., Chen, J., & Fang, K. (2021). Direct Conversion of Syngas to Higher Alcohols over a CuCoAl|t-ZrO2 multifunctional catalyst. ChemCatChem, 13(13), 3184–3197. https://doi.org/10.1002/cctc.202100293

Iskandar, M. J., Baharum, A., Anuar, F. H., & Othaman, R. (2018). Palm oil industry in South East Asia and the effluent treatment technology—A review. Environmental Technology and Innovation, 9(May 2017), 169–185. https://doi.org/10.1016/j.eti.2017.11.003

Leela, D., Nur, S. M., Yandri, E., & Ariati, R. (2018). Performance of Palm Oil Mill Effluent (POME) as biodiesel source based on different ponds. E3S Web of Conferences, 67, 1–9. https://doi.org/10.1051/e3sconf/20186702038

Low, S. S., Bong, K. X., Mubashir, M., Cheng, C. K., Lam, M. K., Lim, J. W., Ho, Y. C., Lee, K. T., Munawaroh, H. S. H., & Show, P. L. (2021). Microalgae cultivation in palm oil mill effluent (Pome) treatment and biofuel production. Sustainability (Switzerland), 13(6). https://doi.org/10.3390/su13063247

Mohammad, S., Baidurah, S., Kobayashi, T., Ismail, N., & Leh, C. P. (2021). Palm oil mill effluent treatment processes—A review. Processes, 9(5), 1–22. https://doi.org/10.3390/pr9050739

Muanruksa, P., Winterburn, J., & Kaewkannetra, P. (2021). Biojet Fuel Production from Waste of Palm Oil Mill Effluent through Enzymatic Hydrolysis and Decarboxylation. Catalysts, 11(1). https://doi.org/10.3390/catal11010078

Ng, K. H., Yuan, L. S., Cheng, C. K., Chen, K., & Fang, C. (2019). TiO2 and ZnO photocatalytic treatment of palm oil mill effluent (POME) and feasibility of renewable energy generation: A short review. Journal of Cleaner Production, 233, 209–225. https://doi.org/10.1016/j.jclepro.2019.06.044

Puello-Polo, E., Arias, D., & Márquez, E. (2022). Al2O3-MgO Supported Ni, Mo, and NiMo mixed phosphidic-sulphidic phase for hydrotreating of stearic and oleic acids into green diesel. Frontiers in Chemistry, 10(May), 1–18. https://doi.org/10.3389/fchem.2022.880051

Pulungan, A. N., Kembaren, A., Nurfajriani, N., Syuhada, F. A., Sihombing, J. L., Yusuf, M., & Rahayu, R. (2021). Biodiesel production from rubber seed oil using natural zeolite supported metal oxide catalysts. Polish Journal of Environmental Studies, 30(6), 5681–5689. https://doi.org/10.15244/pjoes/135615

Semilin, V., Janaun, J., Chung, C. H., Touhami, D., Haywood, S. K., Chong, K. P., Yaser, A. Z., & Zein, S. H. (2021). Recovery of oil from palm oil mill effluent using polypropylene micro/nanofiber. Journal of Hazardous Materials, 404(PB), 124144. https://doi.org/10.1016/j.jhazmat.2020.124144

Sihombing, J. L., Gea, S., Pulungan, A. N., Agusnar, H., Wirjosentono, B., & Hutapea, Y. A. (2018). The characterization of Sarulla natural zeolite crystal and its morphological structure. AIP Conference Proceedings, 2049. https://doi.org/10.1063/1.5082467

Sihombing, J. L., Gea, S., Wirjosentono, B., Agusnar, H., Pulungan, A. N., Herlinawati, H., & Yusuf, M. (2020). Characteristic and catalytic performance of Co and Co-Mo Metal Impregnated in Sarulla Natural Zeolite Catalyst for hydrocracking of MEFA rubber seed oil into biogasoline fraction. Catalysts, 10, 121.

Sihombing, J. L., Herlinawati, H., Pulungan, A. N., Simatupang, L., Rahayu, R., & Wibowo, A. A. (2023). Effective hydrodeoxygenation bio-oil via natural zeolite supported transition metal oxide catalyst. Arabian Journal of Chemistry, 16(6), 104707. https://doi.org/10.1016/j.arabjc.2023.104707

Sotomayor, F., Quantatec, A. P., Sotomayor, F. J., Cychosz, K. A., & Thommes, M. (2018). Characterization of micro/mesoporous materials by physisorption: Concepts and case studies. Acc. Mater. Surf. Res, 3(2), 34–50. https://www.researchgate.net/publication/331260891

Wahyuni, E. T., Diantariani, N. P., Kartini, I., & Kuncaka, A. (2022). Enhancement of the photostability and visible photoactivity of ZnO photocatalyst used for reduction of Cr(VI) ions. Results in Engineering, 13, 100351. https://doi.org/https://doi.org/10.1016/j.rineng.2022.100351

Wang, C., Leng, S., Guo, H., Yu, J., Li, W., Cao, L., & Huang, J. (2019). Quantitative arrangement of Si/Al ratio of natural zeolite using acid treatment. Applied Surface Science, 498(May), 143874. https://doi.org/10.1016/j.apsusc.2019.143874

Žula, M., Grilc, M., & Likozar, B. (2022). Hydrocracking, hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics and transport phenomena. Chemical Engineering Journal, 444(February). https://doi.org/10.1016/j.cej.2022.136564

Zulqarnain, Yusoff, M. H. M., Ayoub, M., Hamza Nazir, M., Zahid, I., Ameen, M., Abbas, W., Shoparwe, N. F., & Abbas, N. (2021). Comprehensive review on biodiesel production from palm oil mill effluent. ChemBioEng Reviews, 8(5), 439–462. https://doi.org/10.1002/cben.202100007

Zulqarnain, Yusoff, M. H. M., Ayoub, M., Nazir, M. H., Sher, F., Zahid, I., & Ameen, M. (2021). Solvent extraction and performance analysis of residual palm oil for biodiesel production: Experimental and simulation study. Journal of Environmental Chemical Engineering, 9(4), 105519. https://doi.org/10.1016/j.jece.2021.105519




DOI: https://doi.org/10.24114/jpkim.v15i2.43324

Article Metrics

Abstract view : 132 times
PDF - 64 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Junifa Layla Sihombing, Herlinawati Herlinawati, Ahmad Nasir Pulungan, Agus Kembaren, Gimelliya Saragih, Harmileni Harmileni, Rahayu Rahayu, Ary Anggara Wibowo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Pendidikan Kimia
Contact: +62 853-1769-2813
Email: jpkim.pps@unimed.ac.id

Jl. Willem Iskandar, Pasar V, Medan Estate, Medan City, North Sumatra Province, Postal Code 20221. Phone/fax: (061) 661 3365 / +62 852-7802-1981.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.