Optimization of the upgrading process of bio-oil from palm fronds: The effect of temperature, catalyst mass ratio, and reaction time
Abstract
Keywords
Full Text:
PDFReferences
Astuti, M. D., Kristina, D., Rodiansono, R., & Mujiyanti, D. R. (2020). One-pot selective conversion of biomass-derived furfural into cyclopentanone/Cyclopentanol over TiO2 supported bimetallic Ni-M (M = Co, Fe) catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 231–241. https://doi.org/10.9767/bcrec.15.1.6307.231-241
Bjelić, A., Grilc, M., Huš, M., & Likozar, B. (2019). Hydrogenation and hydrodeoxygenation of aromatic lignin monomers over Cu/C, Ni/C, Pd/C, Pt/C, Rh/C and Ru/C catalysts: Mechanisms, reaction micro-kinetic modelling and quantitative structure-activity relationships. Chemical Engineering Journal, 359(July 2018), 305–320. https://doi.org/10.1016/j.cej.2018.11.107
Chantanumat, Y., Phetwarotai, W., Sangthong, S., Palamanit, A., Abu Bakar, M. S., Cheirsilp, B., & Phusunti, N. (2022). Characterization of bio-oil and biochar from slow pyrolysis of oil palm plantation and palm oil mill wastes. Biomass Conversion and Biorefinery, 13(15), 13813–13825. https://doi.org/10.1007/s13399-021-02291-2
Dohade, M., & Dhepe, P. L. (2018). Efficient method for cyclopentanone synthesis from furfural: Understanding the role of solvents and solubility in a bimetallic catalytic system. Catalysis Science and Technology, 8(20), 5259–5269. https://doi.org/10.1039/c8cy01468j
Gea, S., Hutapea, Y. A., Piliang, A. F. R., Pulungan, A. N., Rahayu, R., Layla, J., Tikoalu, A. D., Wijaya, K., & Saputri, W. D. (2022). A comprehensive review of experimental parameters in bio-oil upgrading from pyrolysis of biomass to biofuel through catalytic hydrodeoxygenation. BioEnergy Research, 16(1), 325–347. https://doi.org/10.1007/s12155-022-10438-w
Gea, S., Irvan, I., Wijaya, K., Nadia, A., Pulungan, A. N., Sihombing, J. L., & Rahayu, R. (2022a). Bio-oil hydrodeoxygenation over acid activated-zeolite with different Si/Al ratio. Biofuel Research Journal, 9(2), 1630–1639. https://doi.org/10.18331/brj2022.9.2.4
Gea, S., Irvan, Wijaya, K., Nadia, A., Pulungan, A. N., Sihombing, J. L., & Rahayu. (2022b). Bio-oil hydrodeoxygenation over zeolite-based catalyst: the effect of zeolite activation and nickel loading on product characteristics. International Journal of Energy and Environmental Engineering, 13(2), 541–553. https://doi.org/10.1007/s40095-021-00467-0
Husna, A. F., Febrianti, F., Syah, H. H., Pangaribuan, R. A., Surbakti, T. A., Sihombing, J. L., & Pulungan, A. N. (2022). Conversion of cellulose from palm oil middle waste (Elaeis Guineensis) into bio-oil products as alternative fuel. Egyptian Journal of Chemistry, 65(11), 61–67. https://doi.org/10.21608/ejchem.2022.96526.4517
Kumar, P., Yenumala, S. R., Maity, S. K., & Shee, D. (2014). Kinetics of hydrodeoxygenation of stearic acid using supported nickel catalysts: Effects of supports. Applied Catalysis A: General, 471, 28–38. https://doi.org/10.1016/j.apcata.2013.11.021
Liu, T., Tian, Z., Zhang, W., Luo, B., Lei, L., Wang, C., Liu, J., Shu, R., & Chen, Y. (2023). Selective hydrodeoxygenation of lignin-derived phenols to alkyl cyclohexanols over highly dispersed RuFe bimetallic catalysts. Fuel, 339(100), 126916. https://doi.org/10.1016/j.fuel.2022.126916
Luo, J., Monai, M., Yun, H., Arroyo-Ramírez, L., Wang, C., Murray, C. B., Fornasiero, P., & Gorte, R. J. (2016). The H2 pressure dependence of hydrodeoxygenation selectivities for furfural over Pt/C catalysts. Catalysis Letters, 146(4), 711–717. https://doi.org/10.1007/s10562-016-1705-x
Madsen, A. T., Ahmed, E. H., Christensen, C. H., Fehrmann, R., & Riisager, A. (2011). Hydrodeoxygenation of waste fat for diesel production: Study on model feed with Pt/alumina catalyst. Fuel, 90(11), 3433–3438. https://doi.org/10.1016/j.fuel.2011.06.005
Pulungan, A. N., Goei, R., Harahap, F., Simatupang, L., Suriani, C., Gea, S., Hasibuan, M. I., Sihombing, J. L., & Tok, A. I. Y. (2023). Pyrolysis of palm fronds waste into bio-oil and upgrading process via esterification-hydrodeoxygenation using Cu–Zn metal oxide catalyst loaded on mordenite zeolite. Waste and Biomass Valorization, 15(1), 187–206. https://doi.org/10.1007/s12649-023-02153-0
Pulungan, A. N., Goei, R., Kembaren, A., Nurfajriani, N., Sihombing, J. L., Gea, S., Wong, H. R., Hasibuan, M. I., Rahayu, R., & Tok, A. I. Y. (2023). Two stages upgrading of bio-oil through esterification and hydrodeoxygenation reactions using Fe2O3-CoO supported catalyst. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-023-04237-2
Ramos, R., Tišler, Z., Kikhtyanin, O., & Kubička, D. (2016). Towards understanding the hydrodeoxygenation pathways of furfural-acetone aldol condensation products over supported Pt catalysts. Catalysis Science and Technology, 6(6), 1829–1841. https://doi.org/10.1039/c5cy01422k
Remón, J., Casales, M., Gracia, J., Callén, M. S., Pinilla, J. L., & Suelves, I. (2021). Sustainable production of liquid biofuels and value-added platform chemicals by hydrodeoxygenation of lignocellulosic bio-oil over a carbon–neutral Mo2C/CNF catalyst. Chemical Engineering Journal, 405, 126705. https://doi.org/10.1016/j.cej.2020.126705
Shao, Y., Sun, K., Fan, M., Gao, G., Wang, J., Zhang, L., Zhang, S., & Hu, X. (2022). Synthesis of a thermally and hydrothermally stable copper-based catalyst via alloying of Cu with Ni and Zn for catalyzing conversion of furfural into cyclopentanone. ACS Sustainable Chemistry & Engineering, 10(27), 8763–8777. https://doi.org/10.1021/acssuschemeng.2c01082
Sihombing, J. L., Herlinawati, H., Pulungan, A. N., Simatupang, L., Rahayu, R., & Wibowo, A. A. (2023). Effective hydrodeoxygenation bio-oil via natural zeolite supported transition metal oxide catalyst. Arabian Journal of Chemistry, 16(6), 104707. https://doi.org/10.1016/j.arabjc.2023.104707
Sondakh, R. C., Hambali, E., & Indrasti, N. S. (2019). Improving characteristic of bio-oil by esterification method. IOP Conference Series: Earth and Environmental Science, 230, 012071. https://doi.org/10.1088/1755-1315/230/1/012071
Song, W., Liu, Y., Baráth, E., Zhao, C., & Lercher, J. A. (2015). Synergistic effects of Ni and acid sites for hydrogenation and C-O bond cleavage of substituted phenols. Green Chemistry, 17(2), 1204–1218. https://doi.org/10.1039/c4gc01798f
Tian, H., Gao, G., Xu, Q., Gao, Z., Zhang, S., Hu, G., Xu, L., & Hu, X. (2021). Facilitating selective conversion of furfural to cyclopentanone via reducing availability of metallic nickel sites. Molecular Catalysis, 510(March), 111697. https://doi.org/10.1016/j.mcat.2021.111697
Wang, C., Luo, J., Liao, V., Lee, J. D., Onn, T. M., Murray, C. B., & Gorte, R. J. (2018). A comparison of furfural hydrodeoxygenation over Pt-Co and Ni-Fe catalysts at high and low H2 pressures. Catalysis Today, 302, 73–79. https://doi.org/10.1016/j.cattod.2017.06.042
Zhong, M., Huang, J., Yuan, J., Rong, S., Ou, P., Chen, X., Zhang, B., Ke, Q., & Zhu, Z. (2021). Solvothermal synthesis and characterization of porous co microspheres. Materiali in Tehnologije, 55(5), 663–666. https://doi.org/10.17222/MIT.2021.160
DOI: https://doi.org/10.24114/jpkim.v16i1.52556
Article Metrics
Abstract view : 185 timesPDF - 70 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Junifa Layla Sihombing
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Pendidikan Kimia
Contact: +62 853-1769-2813
Email: jpkim.pps@unimed.ac.id
Jl. Willem Iskandar, Pasar V, Medan Estate, Medan City, North Sumatra Province, Postal Code 20221. Phone/fax: (061) 661 3365 / +62 852-7802-1981.
This work is licensed under a Creative Commons Attribution 4.0 International License.