Effectiveness of sulfuric acid and hydrochloric acid catalysts in the esterification of frankincense cinnamic acid with ethanol and methanol

Marham Sitorus, Retno Dwi Suyanti, Iis Siti Jahro, Suria Bersinar Siahaan, Innovayani Saragih, Francisca T. A Sitorus

Abstract


This research aims to compare the effectiveness of sulfuric acid and hydrochloric acid catalysts in the esterification of frankincense cinnamic acid (STYRAX paraleoncomud PERK). Esterification of sulfuric acid catalyst is carried out with ethanol and for hydrochloric acid catalyst with methanol. Esterification was carried out by refluxing a mixture of 1:20 cinnamic acid - ethanol and methanol, with 3 mL of each catalyst at a temperature of 60oC for one hour. The results were rinsed with 3 x 50 mL distilled water and dried with anhydrous sodium sulfate. The results were filtered and verified for functional groups using FTIR and composition analysis using GC – MS. The results of FTIR interpretation show a decrease in absorption intensity (-OH) at 3500 cm-1 as a functional group that reacts compared to the ester results as an indication of the ongoing esterification reaction. The resulting ethyl cinnamate has a high conversion of 84.42%. Methyl cinnamate also has a distinctive ester aroma but is clearer and based on GC-MS, the content of methyl cinnamate is relatively low, namely 34.40%, the remaining cinnamic acid is 37.28%, and various side products of 28.32%. Thus, the catalyst that provides better conversion is sulfuric acid, but it requires further purification by examining the appropriate absorbent and bleaching agent. The brown color of the ester product catalyzed by sulfuric acid is thought to occur due to the oxidation of the cinnamic acid double bond by the catalyst.


Keywords


Alcohol; Cinnamic acid; Esterification; Frankincense

Full Text:

PDF

References


Berthomieu, C., & Hienerwadel, R. (2009). Fourier transform infrared (FTIR) spectroscopy. Photosynthesis Research, 101(2–3), 157–170. https://doi.org/10.1007/s11120-009-9439-x

Ashish, C.; Manish, K.G.; Priyanka, C. (2014). GC-MS Technique and its analytical applications in science and technology. Journal of Analytical & Bioanalytical Techniques, 5(6). https://doi.org/10.4172/2155-9872.1000222

Cao, H., Qian, R., & Yu, L. (2020). Selenium-catalyzed oxidation of alkenes: insight into the mechanisms and developing trend. Catalysis Science & Technology, 10(10), 3113–3121. https://doi.org/10.1039/d0cy00400f

Cao, L., Guler, M., Tagirdzhanov, A., Lee, Y.-Y., Gurevich, A., & Mohimani, H. (2021). MolDiscovery: learning mass spectrometry fragmentation of small molecules. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23986-0

Chehri, Z., Zolfaghari, B., & Dinani, M. S. (2018). Isolation of Cinnamic Acid Derivatives from the Bulbs of Allium tripedale. Advanced Biomedical Research, 7(1), 60. https://doi.org/10.4103/abr.abr_34_17

Costa, D. C. S. (2020). Additions to non-activated alkenes: Recent advances. Arabian Journal of Chemistry, 13(1), 799-834. https://doi.org/10.1016/j.arabjc.2017.07.017

Fakhry, M. N., & Rahayu, S. S. (2016). Pengaruh suhu pada esterifikasi amil alkohol dengan asam asetat menggunakan asam sulfat sebagai katalisator. Jurnal Rekayasa Proses, 10(2), 64. https://doi.org/10.22146/jrekpros.33339

Gui, J., Cong, X., Liu, D., Zhang, X., Hu, Z., & Sun, Z. (2004). Novel Brønsted acidic ionic liquid as efficient and reusable catalyst system for esterification. Catalysis Communications, 5(9), 473–477. https://doi.org/10.1016/j.catcom.2004.06.004

Khan, Z., Javed, F., Shamair, Z., Hafeez, A., Fazal, T., Aslam, A., Zimmerman, W. B., & Rehman, F. (2021). Current developments in esterification reaction: A review on process and parameters. Journal of Industrial and Engineering Chemistry, 103, 80–101. https://doi.org/10.1016/j.jiec.2021.07.018

Klimkiewicz, R. (2014). Upgrading oxygenated Fischer-Tropsch derivatives and one-step direct synthesis of ethyl acetate from ethanol - examples of the desirability of research on simple chemical compounds transformations. Chemistry Central Journal, 8(1). https://doi.org/10.1186/s13065-014-0077-9

Kon, Y., Nakashima, T., Makino, Y., Nagashima, H., Onozawa, S. Y., Kobayashi, S., & Sato, K. (2023). Continuous synthesis of epoxides from alkenes by hydrogen peroxide with titanium silicalite‐1 catalyst using flow reactors. Advanced Synthesis & Catalysis, 365(19), 3227-3233. https://doi.org/10.1002/adsc.202300181

Masike, K., Mhlongo, M. I., Mudau, S. P., Nobela, O., Ncube, E. N., Tugizimana, F., George, M. J., & Madala, N. E. (2017). Highlighting mass spectrometric fragmentation differences and similarities between hydroxycinnamoyl-quinic acids and hydroxycinnamoyl-isocitric acids. Chemistry Central Journal, 11(1), 1-7. https://doi.org/10.1186/s13065-017-0262-8

Minami, E., & Saka, S. (2006). Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel, 85(17–18), 2479–2483. https://doi.org/10.1016/j.fuel.2006.04.017

Nugraha, A., & Nandiyanto, A. B. D. (2021). How to read and Interpret GC/MS Spectra. Indonesian Journal of Multidiciplinary Research, 1(2), 171–206. https://doi.org/10.17509/ijomr.v1i2.35191

Santaella, M. A., Orjuela, A., & Narváez, P. C. (2015). Comparison of different reactive distillation schemes for ethyl acetate production using sustainability indicators. Chemical Engineering and Processing: Process Intensification, 96, 1–13. https://doi.org/10.1016/j.cep.2015.07.027

Schüler, J., Neumann, S., Müller‐Hannemann, M., & Brandt, W. (2018). ChemFrag: Chemically meaningful annotation of fragment ion mass spectra. Journal of Mass Spectrometry, 53(11), 1104–1115. Portico. https://doi.org/10.1002/jms.4278

Setyawardhani, D. A., Yoenitasari, Y., & Wahyuningsih, S. (2005). Kinetika reaksi esterifikasi asam formiat dengan etanol pada variasi suhu dan konsentrasi katalis. Ekuilibrium, 4(2), 64-70.

Supaya, S. S. (2019). Refdes Kombinasi alat refluks dan distilasi, upaya efisiensi proses refluks dan distilasi untuk praktikum kimia organik. Indonesian Journal of Laboratory, 1(4), 41. https://doi.org/10.22146/ijl.v1i4.52716

Wai, P. T., Jiang, P., Shen, Y., Zhang, P., Gu, Q., & Leng, Y. (2019). Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products. RSC Advances, 9(65), 38119–38136. https://doi.org/10.1039/c9ra05943a

Wang, J., Seow, J. Z. Y., Xu, Z. J., & Ren, X. (2023). Selective electrochemical oxidation of alkene: Recent progress and perspectives. Chinese Journal of Catalysis, 53, 34–51. https://doi.org/10.1016/s1872-2067(23)64522-x




DOI: https://doi.org/10.24114/jpkim.v16i1.53231

Article Metrics

Abstract view : 94 times
PDF - 42 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Marham Sitorus

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Pendidikan Kimia
Contact: +62 853-1769-2813
Email: jpkim.pps@unimed.ac.id

Jl. Willem Iskandar, Pasar V, Medan Estate, Medan City, North Sumatra Province, Postal Code 20221. Phone/fax: (061) 661 3365 / +62 852-7802-1981.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.