Synthesis and characterization nitrogen-doped carbon dots from candlenut shells using hydrothermal and solvothermal methods

Riska Riska, Marpongahtun Marpongahtun, Saharman Gea

Abstract


Candlenut shells can be utilized as precursors for Carbon Dots (CDs) since new nanoscale materials have been proven using lignin, cellulose, hemicellulose, and carbon present in candlenut shells. A carbon substance smaller than 10 nm in size, CDs have special optical properties. This research focuses on the synthesis of CDs and Nitrogen Carbon Dot (NCDs) from hazelnut shell using urea passivation agent by hydrothermal and solvothermal methods, to determine the effect of solvent on the emission produced by CDs and NCDs. Hazelnut shell was carbonized at 300°C for 6 hours. The synthesis of CDs and NCDs was carried out at 220°C for 8 hours, then sonicated at 75°C for 30 minutes. The synthesis results were centrifuged at 5000 rpm for 30 minutes, filtered using Whatman No.42 filter paper. Analysis with a 365 nm UV lamp produced bluish green luminescence, brighter luminescence was shown in NCDs by solvothermal method. UV-Vis spectra showed absorbance peaks of 289-309 nm for CDs and 335-350 nm for NCDs. FTIR spectra of CDs and NCDs produced OH, CH, C=C, C=O, C-N, CO, and C-O-C functional groups. Photoluminescence analysis showed emission peaks of CDs and NCDs at 494 nm and 496 nm for hydrothermal method, for solvothermal method at 418 nm and 432 nm. CDs and NCDs with hydrothermal method showed higher intensity than with solvothermal method. The quantum yield values obtained were 11.4226% and 25.7419% and 10.2555% and 11.7473% for hydrothermal and solvothermal methods, respectively. Solvothermal method was effective for the synthesis of CDs and NCDs with brighter luminescence.


Keywords


Carbon dots; Candlenut shell; Urea; Hidrotermal; Solvotermal

Full Text:

PDF

References


Ayu, D. G., Gea, S., Andriayani, N., Telaumbanua, D. J., Piliang, A. F. R., Harahap, M., Yen, Z., Goei, R., & Tok, A. I. Y. (2023). Photocatalytic degradation of methylene blue using N-Doped ZnO/Carbon Dot (N-ZnO/CD) nanocomposites derived from organic soybean. ACS Omega, 8(17), 14965–14984. https://doi.org/10.1021/acsomega.2c07546

Bang, J. H., & Suslick, K. S. (2010). Applications of ultrasound to the synthesis of nanostructured materials. Advanced Materials, 22(10), 1039–1059. https://doi.org/10.1002/adma.200904093

Bhattacharya, D., Kumar, V., & Packirisamy, G. (2022). Biocompatible carbon nanodots from red onion peels for anti-oxidative and bioimaging applications. Materials Express, 11(12), 1958–1965. https://doi.org/10.1166/mex.2021.2101

Chung, Y. J., Kim, J., & Park, C. B. (2020). Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS Nano, 14(6), 6470–6497. https://doi.org/10.1021/acsnano.0c02114

Ding, H., Ji, Y., Wei, J. S., Gao, Q. Y., Zhou, Z. Y., & Xiong, H. M. (2017). Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. Journal of Materials Chemistry B, 5(26), 5272–5277. https://doi.org/10.1039/c7tb01130j

Ding, H., Li, X. H., Chen, X. B., Wei, J. S., Li, X. B., & Xiong, H. M. (2020). Surface states of carbon dots and their influences on luminescence. Journal of Applied Physics, 127(23). https://doi.org/10.1063/1.5143819

Dong, Y., Pang, H., Yang, H. Bin, Guo, C., Shao, J., Chi, Y., Li, C. M., & Yu, T. (2013). Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angewandte Chemie - International Edition, 52(30), 7800–7804. https://doi.org/10.1002/anie.201301114

Ge, G., Li, L., Chen, M., Wu, X., Yang, Y., Wang, D., Zuo, S., Zeng, Z., Xiong, W., & Guo, C. (2022). Green synthesis of nitrogen–doped carbon dots from fresh tea leaves for selective Fe3+ ions detection and cellular imaging. Nanomaterials, 12(6). https://doi.org/10.3390/nano12060986

Ghosal, K., & Ghosh, A. (2019). Carbon dots: The next generation platform for biomedical applications. Materials Science and Engineering C, 96, 887–903. https://doi.org/10.1016/j.msec.2018.11.060

Hulupi, M., Nabilah, N., Nabilah, T. H., Keryanti, K., & Abdilah, F. (2022). Sintesis carbon nanodots dari molase menggunakan metode pemanasan terbantukan gelombang mikro. Equilibrium Journal of Chemical Engineering, 6(1), 31–35. https://doi.org/10.20961/equilibrium.v6i1.61212

Ji, C., Zhou, Y., Leblanc, R. M., & Peng, Z. (2020). Recent developments of carbon dots in biosensing: A review. ACS Sensors, 5(9), 2724–2741. https://doi.org/10.1021/acssensors.0c01556

Jiang, K., Feng, X., Gao, X., Wang, Y., Cai, C., Li, Z., & Lin, H. (2019). Preparation of multicolor photoluminescent carbon dots by tuning surface states. Nanomaterials, 9(4), 1–12. https://doi.org/10.3390/nano9040529

Kang, C., Huang, Y., Yang, H., Yan, X. F., & Chen, Z. P. (2020). A review of carbon dots produced from biomass wastes. Nanomaterials, 10(11), 1–24. https://doi.org/10.3390/nano10112316

Kou, X., Jiang, S., Park, S. J., & Meng, L. Y. (2020). A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots. In Dalton Transactions, 49, (21). https://doi.org/10.1039/d0dt01004a

Li, F., Yang, D., & Xu, H. (2019). Non-metal-heteroatom-doped carbon dots: Synthesis and properties. Chemistry - A European Journal, 25(5), 1165–1176. https://doi.org/10.1002/chem.201802793

Liang, W., Li, Z., Li, H., Liu, Z., Wang, X., & Yang, K. (2019). The influence of functional group on photoluminescence properties of carbon dots. ECS Journal of Solid State Science and Technology, 8(12), R176–R182. https://doi.org/10.1149/2.0131912jss

Lima, N. B. D., Gonçalves, S. M. C., Júnior, S. A., & Simas, A. M. (2013). A comprehensive strategy to boost the quantum yield of luminescence of europium complexes. Scientific Reports, 3(Iii), 1–8. https://doi.org/10.1038/srep02395

Liu, C., Zhang, F., Hu, J., Gao, W., & Zhang, M. (2021). A mini review on pH-sensitive photoluminescence in carbon nanodots. Frontiers in Chemistry, 8(January), 1–9. https://doi.org/10.3389/fchem.2020.605028

Liu, J., Li, R., & Yang, B. (2020). Carbon Dots: A new type of carbon-based nanomaterial with wide applications. ACS Central Science, 6(12), 2179–2195. https://doi.org/10.1021/acscentsci.0c01306

Liu, K., Xia, C., Guo, Y., Yu, H., Xie, Y., & Yao, W. (2023). Polyethylenimine-functionalized nitrogen and sulfur co-doped carbon dots as effective fluorescent probes for detection of Hg2+ ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122395. https://doi.org/10.1016/j.saa.2023.122395

Longo, A. V., Sciortino, A., Cannas, M., & Messina, F. (2020). UV photobleaching of carbon nanodots investigated by: In situ optical methods. Physical Chemistry Chemical Physics, 22(24), 13398–13407. https://doi.org/10.1039/d0cp00952k

Magesa, F., Wu, Y., Dong, S., Tian, Y., Li, G., Vianney, J. M., Buza, J., Liu, J., & He, Q. (2020). Electrochemical sensing fabricated with TA2O5 nanoparticle-electrochemically reduced graphene oxide nanocomposite for the detection of oxytetracycline. Biomolecules, 10(1), 1–13. https://doi.org/10.3390/biom10010110

Manioudakis, J., Victoria, F., Thompson, C. A., Brown, L., Movsum, M., Lucifero, R., & Naccache, R. (2019). Effects of nitrogen-doping on the photophysical properties of carbon dots. Journal of Materials Chemistry C, 7(4), 853–862. https://doi.org/10.1039/c8tc04821e

Marpongahtun, Andriayani, Muis, Y., Gea, S., Amaturrahim, S. A., Attaurrazaq, B., & Daulay, A. (2023). Synthesis of nitrogen-doped carbon dots from nanocrystalline cellulose by pyrolysis method as Hg2+ detector. International Journal of Technology, 14(1), 219–231. https://doi.org/10.14716/ijtech.v14i1.4863

Marpongahtun, Gea, S., Muis, Y., Andriayani, Novita, T., & Piliang, A. F. (2018). Synthesis of Carbon nanodots from cellulose nanocrystals oil palm empty fruit by pyrolysis method. Journal of Physics: Conference Series, 1120(1). https://doi.org/10.1088/1742-6596/1120/1/012071

Park, Y., Kim, Y., Chang, H., Won, S., Kim, H., & Kwon, W. (2020). Biocompatible nitrogen-doped carbon dots: synthesis, characterization, and application. Journal of Materials Chemistry B, 8(39), 8935–8951. https://doi.org/10.1039/d0tb01334j

Piliang, A. F. R., Tarigan, K., Humaidi, S., Barus, D. A., & Gea, S. (2022). Nitrogen-doped carbon dots from bilimbi juice (Averrhoa bilimbi L.) via hydrothermal method for iron and mercury sensing. Elkawnie, 8(1), 149. https://doi.org/10.22373/ekw.v8i1.11813

Pramudita, R., Marpongahtun, Gea, S., Daulay, A., Harahap, M., Tan, Y. Z., Goei, R., & Tok, A. I. Y. (2022). Synthesis of fluorescent citric acid carbon dots composites derived from empty fruit bunches of palm oil tree and its anti-bacterial property. Case Studies in Chemical and Environmental Engineering, 6(1), 100277. https://doi.org/10.1016/j.cscee.2022.100277

Prasannan, A., & Imae, T. (2013). One-pot synthesis of fluorescent carbon dots from orange waste peels. Industrial and Engineering Chemistry Research, 52(44), 15673–15678. https://doi.org/10.1021/ie402421s

Prathumsuwan, T., Jamnongsong, S., Sampattavanich, S., & Paoprasert, P. (2018). Preparation of carbon dots from succinic acid and glycerol as ferrous ion and hydrogen peroxide dual-mode sensors and for cell imaging. Optical Materials, 86, 517–529. https://doi.org/10.1016/j.optmat.2018.10.054

Prayugo, A. S., Marpongahtun, Gea, S., Daulay, A., Harahap, M., Siow, J., Goei, R., & Tok, A. I. Y. (2023). Highly fluorescent nitrogen-doped carbon dots derived from jengkol peels (Archindendron pauciflorum) by solvothermal synthesis for sensitive Hg2+ ions detection. Biosensors and Bioelectronics: X, 14(1), 100363. https://doi.org/10.1016/j.biosx.2023.100363

Rosyada, A., Sugiarti, S., & Suparto, I. H. (2023). Synthesis of Carbon Dot Nanoparticles (C-Dot) from Seeds and Seedpods of Kesumba Keling (Bixa orellana) using Hydrothermal and Solvothermal Methods. Jurnal Kimia Sains dan Aplikasi, 26(6), 204–210. https://ejournal.undip.ac.id/index.php/ksa/article/view/53542

Saengsrichan, A., Saikate, C., Silasana, P., Khemthong, P., Wanmolee, W., Phanthasri, J., Youngjan, S., Posoknistakul, P., Ratchahat, S., Laosiripojana, N., Wu, K. C. W., & Sakdaronnarong, C. (2022). The Role of N and S doping on photoluminescent characteristics of carbon dots from palm bunches for fluorimetric sensing of Fe3+ ion. International Journal of Molecular Sciences, 23(9). https://doi.org/10.3390/ijms23095001

Salindeho, N. (2017). Asap Cair Hasil Pirolisis Cangkang Pala Dan Cangkang Kemiri. In Unsrat Press (Vol. 13, Issue 1).

Sarkar, S., Banerjee, D., Ghorai, U. K., & ChattoPadhyay, K. K. (2016). Hydrothermal synthesis of carbon quantum dots and study of its photoluminecence property. International Conference on Microelectronics, Computing and Communication, MicroCom. https://doi.org/10.1109/MicroCom.2016.7522521

Wang, Y., Hu, X., Li, W., Huang, X., Li, Z., Zhang, W., Zhang, X., Zou, X., & Shi, J. (2020). Preparation of boron nitrogen co-doped carbon quantum dots for rapid detection of Cr(VI). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 243, 118807. https://doi.org/10.1016/j.saa.2020.118807

Xu, Q. T., Li, J. C., Xue, H. G., & Guo, S. P. (2018). Binary iron sulfides as anode materials for rechargeable batteries: Crystal structures, syntheses, and electrochemical performance. Journal of Power Sources, 379(December 2017), 41–52. https://doi.org/10.1016/j.jpowsour.2018.01.022

Xu, S., Liu, Y., Yang, H., Zhao, K., Li, J., & Deng, A. (2017). Fluorescent nitrogen and sulfur co-doped carbon dots from casein and their applications for sensitive detection of Hg2+ and biothiols and cellular imaging. Analytica Chimica Acta, 964, 150–160. https://doi.org/10.1016/j.aca.2017.01.037

Yang, X. F., Liu, Z. L., Chen, P. P., Chen, X. S., Li, T. X., & Lu, W. (2008). Broadening of photoluminescence by nonhomogeneous size distribution of self-assembled InAs quantum dots. Chinese Physics Letters, 25(8), 3059–3062. https://doi.org/10.1088/0256-307X/25/8/087

Zhang, Q., Wang, R., Feng, B., Zhong, X., & Ostrikov, K. (Ken). (2021). Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-27071-4

Zhang, T., Ji, Q., Song, J., Li, H., Wang, X., Shi, H., Niu, M., Chu, T., Zhang, F., & Guo, Y. (2022). Preparation of nitrogen and sulfur co-doped fluorescent carbon dots from cellulose nanocrystals as a sensor for the detection of rutin. Molecules, 27(22). https://doi.org/10.3390/molecules27228021

Zhou, Y., Mintz, K. J., Sharma, S. K., & Leblanc, R. M. (2019). Carbon dots: Diverse preparation, application, and perspective in surface chemistry. Langmuir, 35(28), 9115–9132. https://doi.org/10.1021/acs.langmuir.9b00595




DOI: https://doi.org/10.24114/jpkim.v16i1.56957

Article Metrics

Abstract view : 301 times
PDF - 158 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Riska Riska, Marpongahtun Marpongahtun, Saharman Gea

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Pendidikan Kimia
Contact: +62 853-1769-2813
Email: jpkim.pps@unimed.ac.id

Jl. Willem Iskandar, Pasar V, Medan Estate, Medan City, North Sumatra Province, Postal Code 20221. Phone/fax: (061) 661 3365 / +62 852-7802-1981.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

slot gacor slot