Oxidized cellulose 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) for Mn(II) adsorption

Authors

  • I Putu Mahendra Department of Chemistry, Faculty of Science, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia https://orcid.org/0000-0002-0805-4498
  • Venti Finaritan Department of Chemistry, Faculty of Science, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
  • Dwi Liza Ramadiani Department of Chemistry, Faculty of Science, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
  • Hiskia Harianja Department of Pharmacy, Faculty of Pharmacy and Health Sciences, Unversitas Sari Mutiara Indonesia, Medan 20123, Indonesia
  • Khatarina Meldawati Pasaribu Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia https://orcid.org/0000-0003-3411-6864

DOI:

https://doi.org/10.24114/jpkim.v16i3.65195

Keywords:

Adsorption, Cellulose, Mn2+ metal waste, TEMPO/NaOCl/NaBr modified cellulose, Water

Abstract

The presence of excess Mn²⁺ in water can result in unpleasant odors and tastes, and its consumption can lead to neurological disorders in humans. Adsorption using oxidized cellulose is an efficient method for removing Mn²⁺ ions. In this study, cellulose was oxidized using the TEMPO/NaOCl/NaBr system with varying NaOCl concentrations (5, 15, and 30 mmol/g) to identify the optimum conditions for Mn²⁺ adsorption. The carboxyl group content in the oxidized cellulose samples was 0.2393, 0.2435, and 0.2664 mmol/g, respectively. The adsorption efficiencies were 92.40%, 91.71%, and 91.43%, with the highest efficiency observed at 5 mmol/g NaOCl. The decrease in adsorption efficiency at higher NaOCl concentrations was attributed to the oxidation of secondary hydroxyl groups, forming undesirable ketone groups and disrupting the reaction pathway. FTIR analysis confirmed successful oxidation with a new absorption band at 1646 cm⁻¹. XRD analysis showed an increase in the crystalline index to 82.8%, 83.1%, and 83.13% for NaOCl concentrations of 5, 15, and 30 mmol/g, respectively. This study highlights the potential of TEMPO/NaOCl/NaBr-oxidized cellulose as an effective adsorbent for Mn²⁺ removal under optimized conditions.

References

Abou-Zeid, R. E., Dacrory, S., Ali, K. A., & Kamel, S. (2018). Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. International Journal of Biological Macromolecules, 119, 207–214. https://doi.org/10.1016/j.ijbiomac.2018.07.127

Akhyar, Hesti Meilina, Fauzi Djuned, Sri Mulyati, & Abrar Muslim. (2023). Effectifity of dolomite adsorbent in purification of Mn and Cu from acid mine drainage. International Journal of Social Science, Educational, Economics, Agriculture Research and Technology (IJSET), 2(6), 86–96. https://doi.org/10.54443/ijset.v2i6.162

Ali, A. (2017). Removal of Mn(II) from water using chemically modified banana peels as efficient adsorbent. Environmental Nanotechnology, Monitoring & Management, 7, 57–63. https://doi.org/10.1016/j.enmm.2016.12.004

Alnouti, Y. (2009). Bile Acid Sulfation: A Pathway of Bile Acid Elimination and Detoxification. Toxicological Sciences, 108(2), 225–246. https://doi.org/10.1093/toxsci/kfn268

Baron, R. I., & Coseri, S. (2020). Preparation of water-soluble cellulose derivatives using TEMPO radical-mediated oxidation at extended reaction time. Reactive and Functional Polymers, 157, 104768. https://doi.org/10.1016/j.reactfunctpolym.2020.104768

Chen, Q., Xiong, J., Chen, G., & Tan, T. (2020). Preparation and characterization of highly transparent hydrophobic nanocellulose film using corn husks as main material. International Journal of Biological Macromolecules, 158, 781–789. https://doi.org/10.1016/j.ijbiomac.2020.04.250

Dachavaram, S. S., Moore, J. P., Bommagani, S., Penthala, N. R., Calahan, J. L., Delaney, S. P., Munson, E. J., Batta‐Mpouma, J., Kim, J., Hestekin, J. A., & Crooks, P. A. (2020). A Facile Microwave Assisted TEMPO/NaOCl/Oxone (KHSO 5 ) Mediated Micron Cellulose Oxidation Procedure: Preparation of Two Nano TEMPO‐Cellulose Forms. Starch - Stärke, 72(1–2). https://doi.org/10.1002/star.201900213

Gamelas, J. A. F., Pedrosa, J., Lourenço, A. F., Mutjé, P., González, I., Chinga-Carrasco, G., Singh, G., & Ferreira, P. J. T. (2015). On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Micron, 72, 28–33. https://doi.org/10.1016/j.micron.2015.02.003

Guan, Q., Chen, J., Chen, D., Chai, X., He, L., Peng, L., Zhang, J., & Li, J. (2019). A new sight on the catalytic oxidation kinetic behaviors of bamboo cellulose fibers under TEMPO-oxidized system: The fate of carboxyl groups in treated pulps. Journal of Catalysis, 370, 304–309. https://doi.org/10.1016/j.jcat.2019.01.003

Hasrini, R. F., Zakaria, F. R., Adawiyah, D. R., & Suparto, I. H. (2017). Mikroenkapsulasi Minyak Sawit Mentah dengan Penyalut Maltodekstrin dan Isolat Protein Kedelai. Jurnal Teknologi Dan Industri Pangan, 28(1), 10–19. https://doi.org/10.6066/jtip.2017.28.1.10

Huang, C.-F., Tu, C.-W., Lee, R.-H., Yang, C.-H., Hung, W.-C., & Andrew Lin, K.-Y. (2019). Study of various diameter and functionality of TEMPO-oxidized cellulose nanofibers on paraquat adsorptions. Polymer Degradation and Stability, 161, 206–212. https://doi.org/10.1016/j.polymdegradstab.2019.01.023

Idrees, M., Batool, S., Ullah, H., Hussain, Q., Al-Wabel, M. I., Ahmad, M., Hussain, A., Riaz, M., Ok, Y. S., & Kong, J. (2018). Adsorption and thermodynamic mechanisms of manganese removal from aqueous media by biowaste-derived biochars. Journal of Molecular Liquids, 266, 373–380. https://doi.org/10.1016/j.molliq.2018.06.049

Isogai, A., & Zhou, Y. (2019). Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals. Current Opinion in Solid State and Materials Science, 23(2), 101–106. https://doi.org/10.1016/j.cossms.2019.01.001

Lesbani, A., Turnip, E. V., Mohadi, R., & Hidayati, N. (2015). Study Adsorption Desorption of Manganese(II) Using Impregnated Chitin-Cellulose as Adsorbent. International Journal of Science and Engineering, 8(2), 104–108. https://doi.org/10.12777/ijse.8.2.104-108

Li, M., Messele, S. A., Boluk, Y., & Gamal El-Din, M. (2019). Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms. Carbohydrate Polymers, 221, 231–241. https://doi.org/10.1016/j.carbpol.2019.05.078

Lin, C., Zeng, T., Wang, Q., Huang, L., Ni, Y., Huang, F., Ma, X., & Cao, S. (2018). Effects of the Conditions of the TEMPO/NaBr/NaClO System on Carboxyl Groups, Degree of Polymerization, and Yield of the Oxidized Cellulose. BioResource, 3(13), 5965–5975.

Lomelí-Ramírez, M. G., Valdez-Fausto, E. M., Rentería-Urquiza, M., Jiménez-Amezcua, R. M., Anzaldo Hernández, J., Torres-Rendon, J. G., & García Enriquez, S. (2018). Study of green nanocomposites based on corn starch and cellulose nanofibrils from Agave tequilana Weber. Carbohydrate Polymers, 201, 9–19. https://doi.org/10.1016/j.carbpol.2018.08.045

Mendoza, D. J., Browne, C., Raghuwanshi, V. S., Simon, G. P., & Garnier, G. (2019). One-shot TEMPO-periodate oxidation of native cellulose. Carbohydrate Polymers, 226, 115292. https://doi.org/10.1016/j.carbpol.2019.115292

Mishra, S. P., Manent, A.-S., Chabot, B., & Daneault, C. (2012). The Use of Sodium Chlorite in Post-Oxidation of TEMPO-Oxidized Pulp: Effect on Pulp Characteristics and Nanocellulose Yield. Journal of Wood Chemistry and Technology, 32(2), 137–148. https://doi.org/10.1080/02773813.2011.624666

Mondal, Md. I. H., Yeasmin, Mst. S., & Rahman, Md. S. (2015). Preparation of food grade carboxymethyl cellulose from corn husk agrowaste. International Journal of Biological Macromolecules, 79, 144–150. https://doi.org/10.1016/j.ijbiomac.2015.04.061

Nam, S., French, A. D., Condon, B. D., & Concha, M. (2016). Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydrate Polymers, 135, 1–9. https://doi.org/10.1016/j.carbpol.2015.08.035

Pokhrel, S., Shrestha, M., Slouf, M., Sirc, J., & Adhikari, R. (2020). Eco-Friendly Urea-Formaldehyde Composites Based on Corn Husk Cellulose Fiber. International Journal of Composite Materials, 2020(2), 29–36. https://doi.org/10.5923/j.cmaterials.20201002.01

Rudi, N. N., Muhamad, M. S., Te Chuan, L., Alipal, J., Omar, S., Hamidon, N., Abdul Hamid, N. H., Mohamed Sunar, N., Ali, R., & Harun, H. (2020). Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents. Heliyon, 6(9), e05049. https://doi.org/10.1016/j.heliyon.2020.e05049

Sawka, M. N., Cheuvront, S. N., & Carter, R. (2005). Human Water Needs. Nutrition Reviews, 63, S30–S39. https://doi.org/10.1111/j.1753-4887.2005.tb00152.x

Singh, V., Ahmed, G., Vedika, S., Kumar, P., Chaturvedi, S. K., Rai, S. N., Vamanu, E., & Kumar, A. (2024). Toxic heavy metal ions contamination in water and their sustainable reduction by eco-friendly methods: isotherms, thermodynamics and kinetics study. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-58061-3

Tang, Z., Li, W., Lin, X., Xiao, H., Miao, Q., Huang, L., Chen, L., & Wu, H. (2017). TEMPO-Oxidized Cellulose with High Degree of Oxidation. Polymers, 9(9), 421. https://doi.org/10.3390/polym9090421

Tartari, T., Bachmann, L., Maliza, A. G. A., Andrade, F. B., Duarte, M. A. H., & Bramante, C. M. (2016). Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations. Journal of Applied Oral Science, 24(3), 291–298. https://doi.org/10.1590/1678-775720150524

Wiśniowska-Kielian, B., Wiśniowska-Kielian, B., & Niemiec, M. (2015). Accumulation of manganese in selected links of food chains in aquatic ecosystems. Journal of Elementology, 4/2015. https://doi.org/10.5601/jelem.2015.20.1.808

Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., & Guerrero, V. H. (2021). Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation, 22, 101504. https://doi.org/10.1016/j.eti.2021.101504

Downloads

Published

2024-12-30

How to Cite

Mahendra, I. P., Finaritan, V., Ramadiani, D. L., Harianja, H., & Pasaribu, K. M. (2024). Oxidized cellulose 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) for Mn(II) adsorption. Jurnal Pendidikan Kimia, 16(3), 293 – 301. https://doi.org/10.24114/jpkim.v16i3.65195