Prediksi Curah Hujan Bulanan Menggunakan Metode Statistical Downscaling di Pulau Jawa dengan Pemilihan Prediktor Berdasarkan Transpor Uap Air
Abstract
Pulau Jawa merupakan bagian dari Benua Maritim dengan karakteristik geografis yang terdiri dari pegunungan dan dataran rendah. Wilayah ini menjadi sentra produksi padi sehingga prediksi curah hujan penting dilakukan untuk dimanfaatkan para petani dalam mengambil kebijakan. Model sirkulasi global (GCM) digunakan dalam prediksi dinamis untuk mendapatkan informasi curah hujan satu bulan, namun resolusinya yang rendah menjadikan model ini tidak dapat digunakan untuk memperoleh informasi dalam skala kecil sehingga diperlukan metode statistical downscaling. Untuk mendapatkan akurasi yang baik diperlukan prediktor yang terkait dengan curah hujan di wilayah Jawa. Pemilihan lokasi kotak grid prediktor didasarkan pada kandungan air mampu curah (precipitable water) di daerah prediksi dan transpor uap air ke wilayah prediksi. Hasil pemilihan kotak grid terdiri dari Laut Cina Selatan, sekitar wilayah Sumatera dan Samudera Pasifik bagian barat. Pemilihan variabel prediktor dilakukan pada 8 parameter unsur cuaca, yaitu angin zonal dan meridional paras 850 dan 200 milibar, suhu udara paras 2-meter dan 850 milibar, tekanan udara pada paras permukaan laut, serta ketinggian geopotensial pada paras 500 milibar. Hasil korelasi prediktor dan prediktan menunjukkan prediktor terpilih terdiri dari beberapa variable (multivariabel). Perbandingan antara hasil prediksi curah hujan model dan observasi menunjukkan RMSE (Root Mean Square Error) terkecil pada kombinasi Laut Cina Selatan dan Sumatera diikuti oleh kombinasi variabel yang lain. Hasil prediksi juga menunjukkan pola hujan prediksi mampu mengikuti pola monsunal dan antar tahunan (ENSO).
Kata kunci: Statistical Downscaling, prediktor, transpor uap air, dan curah hujan
Java is an island in the Maritime Continent which geographically consists of mountains and lowlands. This region is a center for rice production so that predictions of rainfall are important to be used by farmers in making policies. The global circulation model (GCM) is used in dynamic predictions to obtain one-month rainfall information, but the low resolution makes this model unable to be used to obtain information on a small scale, so statistical downscaling method are needed. To get good accuracy, predictors related to rainfall in the Jawa region are needed. The selection of predictor grid box locations is based on the precipitable water content in the prediction area and the transport of water vapor to the predicted area. The results of grid box selection consist of the South China Sea, around the Sumatra region and the Western Pacific Ocean. The selection of predictor variables is carried out on 8 weather parameters, namely zonal and meridional winds at 850 and 200 millibars, air temperature at 2-meter and 850 millibars, sea level pressure, and geopotential height at 500 millibars. The results of predictor and predictand correlation show that selected predictors consist of several variables (multivariable). The comparison between the model rainfall prediction results and observations shows the smallest RMSE(Root Mean Square Error) in the combination of the South China Sea and Sumatra followed by other combinations of variables. Prediction results also show that the pattern of rain predictions is able to follow a monsoonal and inter-annual pattern (ENSO).
Keywords: Statistical downscaling, predictor, water vapour transport, dan precipitation
Full Text:
PDFReferences
Aldrian, E. dan Susanto, R. D. (2003). Identification of Three Dominant Rainfall Regions within Indonesia and Their Relationship to Sea Surface Temperature. Int. J. Climatol., 23, 1435-1452.
Apriyanal. Y. dan Lindawati. (2015), Aplikasi Model Prediksi Curah Hujan Pada Dua Sentra Produksi Padi Di Jawa Barat, Informatika Pertanian, Vol. 24, No.2, 149 – 156.
Ashok, K., Zhaoyong, Saji, N.H dan Yamagata, T. (2004). Individual and Combined Influences of ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon. Journal Of Climate, 17, 3141-3155.
Athoillah, I., Sibarani, R. M., Doloksaribu, D. E. (2017). Analisis Spasial El Nino Kuat Tahun 2015 dan La Nina Lemah Tahun 2016 (Pengaruhnya terhadap Kelembapan, Angin dan Curah Hujan di Indonesia. Jurnal Sains & Teknologi Modifikasi Cuaca, 18(1), 33 – 41.
BPS, Badan Pusat Statistik (2019). https://www.bps.go.id/linkTableDinamis/view/id/865 [17 Januari 2019]
Batubara, P.N.B. (2017),, The Impact Of Meridonal Wind To Themoisture Transport And Weather Formation In West Indonesia On February Prosiding Seminar Nasional Fisika Vol VI, Oktober p-ISSN: 2339-0654, e-ISSN: 2476-9398, DOI:doi.org/10.21009/03.SNF2017.02.EPA.06
Björnsson, H. dan Venegas, S. A. (1997). A Manual for EOF and SVD Analyses of Climatic Data. Montreal: Department of Atmospheric and Oceanic Sciences and Centre for Climate and Global Change Research, Mc Gill University) p 23
Chang, C.P., McBride, J., dan Liu, C. (2004), Annual Cycle of Southeast Asia-Maritim Continent Rainfall and the Asymmetric Monson Transition. Journal of Climate, 18, 287-301.
Chang, C. P., Wang, Z., Ju, J., dan Li, T. (2004). On The Relationship between Western Maritim Continent Monsoon Rainfall and ENSO during Northern Winter. Journal of Climate, 17, 665-672.
Goly, A. (2014). Development and Evaluation of Statistical Downscaling Models for Monthly Precipitation, Earth Interactions. Volume 18, Paper No. 18, Page 1
Hastenrath. (1994). Recent Advances in Tropical Climate Prediction. Journal Of Climate, 8, 1519-1532.
Hendon. (2003). Indonesian Rainfall Variability: Impacts of ENSO and Local Air-Sea Interaction. Journal of Climate, 16, 1775-1789.
Jang, J.S.R. (1993). ANFIS: Adaptive-Network-Basec Fuzzy Inference System. IEEE Transactions of Sytems, Man, and Cybernetic, 23(3), 1993.
Juneng, L., Tangang, F. T., Kang, H., Lee, W. J. dan Seng, Y. K. (2010). Statistical Downscaling Forecasts for Winter Monsoon Precipitation in Malaysia, Using Multimodel Output Variables. J. Clim., 23, 17-27.
Lee, H.S. (2015). “ General Rainfall Patterns in Indonesia and the Potential Impacts of Local Seas on Rainfall Intensity”, Water, 7, p 1751-1768; doi:10.3390/w7041751, I SSN 2073-4441
Manzanas, R. (2017). Assessing the suitability of statistical downscaling approaches for seasonal forecasting in Senegal Atmospheric Science Letters Atmos. Sci. Let. 18: 381–386, DOI: 10.1002/asl.767
Moron, V., Robertson, A. W., dan Boer, R. (2009). Spatial Coherence and Seasonal Predictability of Monsoon Onset over Indonesia. Journal of Climate, 22, 840-850.
Masson, J. S. dan Baddour O. (2008). Statistical Modeling, Seasonal Climate : Forecasting and Managing Risk, 163-200
Osman, Y. Z., dan Waleda E. A. (2016). Improving Accuracy of Dowscaling Rainfall by Combining Prediction of Different Statistical Downscale Model, Water science, 30, 61-75
Nabilah, F., Prasetyo, Y., dan Sukmono. (2017). Analisis Pengaruh Fenomena El Nino Dan La Nina Terhadap Curah Hujan Tahun 1998 – 2016 menggunakan Indikator Oni (Oceanic Nino Index) (Studi Kasus : Provinsi Jawa Barat), Jurnal Geodesi Universitas Diponegoro.
Nikulin, G., Asharaf, S., Magariñoc, M.E, Calmantie, S., Cardosod, R. M., Bhendg, J., Fernándezc, J., Fríasc, M. D., Fröhlichb, K., Frühb, B. , Garcíac, S. H., Manzanasf, R., Gutiérrezf, J. M, Hanssona, U., Kolaxa, M., Linigerg, M.A., Soaresd, P. M. M, Spirigg, C., Tomed, R., Klaus Wysera K. (2018). Dynamical and statistical downscaling of a global seasonal hindcast in eastern Africa , Climate Services, 9, 72–85
Qian, J. H. (2008). Why Precipitation is Mostly Concentrated over Islands in the Maritime Continent. Journal of the Atmospheric Sciences, 65b, 1428-1441.
Supari. (2014). Spatiotemporal Characteristics of Extreme Rainfall Events Over Java Island, Indonesia (Case: East Java Province),Fakultas Geografi, Universitas Gadjah Mada.
Tatli Hasan, Dalfes, H. Nu¨ Zhet B. Mentes, dan S¸ Sibel A. (2004): Statistical Downscaling Method For Monthly Total Precipitation Over Turkey, International Journal of Climatolology, 24: 161–180.
Tjasyono, B. H. K., Lubis, A., Junaeni, I., Ruminta dan Harijono, S. W. B. (2008). Dampak Variasi Temperatur Samudera Pasifik dan Hindia Ekuatorial Terhadap Curah Hujan di Indonesia. Jurnal Sains Dirgantara, 5, 83-95.
Utami, A.W, Jamhari, dan Hardyastuti, S. (2017). El Nino, La Nina, dan Penawaran Pangan di Jawa, Indonesia Jurnal Ekonomi Pembangunan, 12(2), 257-271.
Utami, M. N. R. dan Hidayat, R. (2015). Influences of IOD and ENSO to Indonesia Rainfall Variability: Role of Atmosphere-Ocean Interaction in the Indo-Pacific Sector. The 2nd International Symposium on LAPAN-IPB Satellite for Food Security and Environmental Monitoring LISAT-FSEM, Procedia Environmental Sciences 33, 196 – 203, 2016
Webster dan Fasullo, (2003). Encyclopedia Atmospheri Science pp 1375-1376.
DOI: https://doi.org/10.24114/jg.v11i1.11474
Article Metrics
Abstract view : 1039 timesPDF - 975 times
Refbacks
- There are currently no refbacks.
Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 36/E/KPT/2019
Copyright ©2020 Jurusan Pendidikan Geografi Fakultas Ilmu Sosial Universitas Negeri Medan dan Ikatan Geograf Indonesia (IGI)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.