Monitoring Aerosol Optical Depth for Air Quality Through Himawari-8 in Urban Area West Java Province Indonesia
Abstract
Air quality is a crucial parameter in human life. One air quality indicator can be observed through Aerosol Optical Depth (AOD). If these substances are pollutants such as particulate matter, aerosols, and ozone, it is confident that air quality will deteriorate, threatening human health and causing climate change. AOD monitoring can be used as a basis for policymakers and related parties to maintain the stability of air quality in the atmosphere. Many ground observation stations monitor air quality by obtaining data on PM2.5 and PM10 aerosol particles. However, the number of ground stations is limited, resulting in incomplete data. Fortunately, remote sensing satellites have the advantage of covering large areas and providing continuous observations, with the ability to gather information on large-scale aerosol and obtain spatiotemporal distribution. Therefore, this research aims to obtain AOD through Himawari-8 and analyze the spatiotemporal air quality in urban areas of West Java based on AOD. The research methodology used in this study is descriptive analysis with an empirical research approach. Assisted by remote sensing technology and Geographic Information Systems, this research generates AOD data extraction that can be obtained from the new generation satellite of Himawari-8. The distribution of AOD levels and spatiotemporal monitoring in urban areas of West Java is very dynamic depending on anthropogenic activity in a particular area and time.
Keywords: Aerosol Optical Depth (AOD), Air Quality, Himawari-8
Full Text:
PDFReferences
Ali, M. A., & Assiri, M. (2019). Analysis of AOD from MODIS-Merged DT–DB Products Over the Arabian Peninsula. Earth Systems and Environment, 3(3), 625–636. https://doi.org/10.1007/s41748-019-00108-x.
Anderson, J. O., Thundiyil, J. G., & Stolbach, A. (2012). Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. Journal of Medical Toxicology, 8(2), 166–175. https://doi.org/10.1007/s13181-011-0203-1.
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., … Yoshida, R. (2016). An introduction to Himawari-8/9 — Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan, 94(2), 151–183. https://doi.org/10.2151/jmsj.2016-009
Che, H., Xia, X., Zhu, J., Li, Z., Dubovik, O., Holben, B., Goloub, P., Chen, H., Estelles, V., Cuevas-Agulló, E., Blarel, L., Wang, H., Zhao, H., Zhang, X., Wang, Y., Sun, J., Tao, R., Zhang, X., & Shi, G. (2014). Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmospheric Chemistry and Physics, 14(4), 2125–2138. https://doi.org/10.5194/acp-14-2125-2014
Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L., & Samet, J. M. (2006). Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. Journal of the American Medical Association, 295(10), 1127–1134. https://doi.org/10.1001/jama.295.10.1127.
Gao, J., Woodward, A., Vardoulakis, S., Kovats, S., Wilkinson, P., Li, L., Xu, L., Li, J., Yang, J., Li, J., Cao, L., Liu, X., Wu, H., & Liu, Q. (2017). Haze, public health and mitigation measures in China: A review of the current evidence for a further policy response. Science of the Total Environment, 578, 148–157. https://doi.org/10.1016/j.scitotenv.2016.10.231.
Gupta, P., Levy, R. C., Mattoo, S., Remer, L. A., Holz, R. E., & Heidinger, A. K. (2019). Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign. Atmospheric Measurement Techniques, 12(12), 6557–6577. https://doi.org/10.5194/amt-12-6557-2019.
Hao, Y., & Xie, S. (2018). Optimal redistribution of an urban air quality monitoring network using atmospheric dispersion model and genetic algorithm. Atmospheric Environment, 177, 222–233. https://doi.org/10.1016/j.atmosenv.2018.01.011.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., & Smirnov, A. (1998). AERONET - A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1), 1–16. https://doi.org/10.1016/S0034-4257(98)00031-5.
Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42(3), 557–569. https://doi.org/10.1109/TGRS.2004.824067.
Ignatov, A., & Stowe, L. (2002). Aerosol retrievals from individual AVHRR channels. Part I: Retrieval algorithm and transition from Dave to 6S radiative transfer model. Journal of the Atmospheric Sciences, 59(3 PT 1), 313–334. https://doi.org/10.1175/1520-0469(2002)059<0313:arfiac>2.0.co;2.
Kamarul Zaman, N. A. F., & Kanniah, K. D. (2020). Spatio-temporal assessment of Aerosol Optical Depth from Himawari-8 satellite data over Malaysia. IOP Conference Series: Earth and Environmental Science, 540(1). https://doi.org/10.1088/1755-1315/540/1/012053.
Kanniah, K. D., Zaman, N. A. F. K., Kaskaoutis, D. G., & Latif, M. T. (2020). COVID-19's impact on the atmospheric environment in the Southeast Asia region. Science of the Total Environment, 736, 139658.
Kim, J., Yoon, J. M., Ahn, M. H., Sohn, B. J., & Lim, H. S. (2008). Retrieving aerosol optical depth using visible and mid-IR channels from geostationary satellite MTSAT-1R. International Journal of Remote Sensing, 29(21), 6181–6192. https://doi.org/10.1080/01431160802175553.
Knapp, Ken R., Frouin, R., Kondraguntas, S., & Prados, A. (2005). Toward aerosol optical depth retrievals over land from GOES visible radiances: Determining surface reflectance. International Journal of Remote Sensing, 26(18), 4097–4116. https://doi.org/10.1080/01431160500099329.
Knapp, Kenneth R., Vonder Haar, T. H., & Kaufman, Y. J. (2002). Aerosol optical depth retrieval from GOES-8: Uncertainty study and retrieval validation over South America. Journal of Geophysical Research: Atmospheres, 107(7–8). https://doi.org/10.1029/2001jd000505.
Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., & Eck, T. F. (2010). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10(21), 10399–10420. https://doi.org/10.5194/acp-10-10399-2010.
Lin, C., Li, Y., Yuan, Z., Lau, A. K. H., Li, C., & Fung, J. C. H. (2015). Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sensing of Environment, 156, 117–128. https://doi.org/10.1016/j.rse.2014.09.015.
Monks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto, H., Amann, M., Baklanov, A., Baltensperger, U., Bey, I., Blake, N., Blake, R. S., Carslaw, K., Cooper, O. R., Dentener, F., Fowler, D., Fragkou, E., Frost, G. J., Generoso, S., … von Glasow, R. (2009). Atmospheric composition change - global and regional air quality. Atmospheric Environment, 43(33), 5268–5350. https://doi.org/10.1016/j.atmosenv.2009.08.021.
Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K. H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., … Williams, R. (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International, 116(February), 286–299. https://doi.org/10.1016/j.envint.2018.04.018.
Prados, A. I., Kondragunta, S., Ciren, P., & Knapp, K. R. (2007). GOES Aerosol/Smoke Product (GASP) over North America: Comparisons to AERONET and MODIS observations. Journal of Geophysical Research-Atmospheres, 112(15), 1–15. https://doi.org/10.1029/2006JD007968.
Ridwana, R., & Himayah, S. (2020). Utilization of remote sensing technology and geographic information systems for tourism development. International Journal of Applied Sciences in Tourism and Events, 4(2), 158-169. http://dx.doi.org/10.31940/ijaste.v4i2.2042
Sakti, A. D., Anggraini, T. S., Ihsan, K. T. N., Misra, P., Trang, N. T. Q., Pradhan, B., ... & Wikantika, K. (2023). Multi-air pollution risk assessment in Southeast Asia using integrated remote sensing and socio-economic data products. Science of The Total Environment, https://doi.org/10.1016/j.scitotenv.2022.158825.
Wang, J., Christopher, S. A., Brechtel, F., Kim, J., Schmid, B., Redemann, J., Russell, P. B., Quinn, P., & Holben, B. N. (2003). Geostationary satellite retrievals of aerosol optical thickness during ACE-Asia. Journal of Geophysical Research: Atmospheres, 108(23). https://doi.org/10.1029/2003jd003580.
Wang, L., Yu, C., Cai, K., Zheng, F., & Li, S. (2020). Retrieval of Aerosol Optical Depth from the Himawari-8 Advanced Himawari Imager data : Application over Beijing in the summer of 2016. Atmospheric Environment, 241(August), 117788. https://doi.org/10.1016/j.atmosenv.2020.117788.
Zhang, T., Zang, L., Wan, Y., Wang, W., & Zhang, Y. (2019). Ground-level PM2.5 estimation over urban agglomerations in China with high spatiotemporal resolution based on Himawari-8. Science of the Total Environment, 676, 535–544. https://doi.org/10.1016/j.scitotenv.2019.04.299.
Zhang, W., Xu, H., & Zheng, F. (2018). Aerosol optical depth retrieval over East Asia using Himawari-8/AHI data. Remote Sensing, 10(1). https://doi.org/10.3390/rs10010137.
DOI: https://doi.org/10.24114/jg.v15i2.36866
Article Metrics
Abstract view : 373 timesPDF - 181 times
Refbacks
- There are currently no refbacks.
Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 36/E/KPT/2019
Copyright ©2020 Jurusan Pendidikan Geografi Fakultas Ilmu Sosial Universitas Negeri Medan dan Ikatan Geograf Indonesia (IGI)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.