Mapping of Land Surface Deformation Using Ps-Insar for Disaster Risk Management in the Future
Abstract
DKI Jakarta is experiencing land subsidence due to overexploitation of its use and the increasing population. It is feared that this decline or deformation will occur in the location of the new national capital. The research objective is "Mapping of Land Surface Deformation using PS-InSAR for Disaster Risk Management in the Future." Quantitative and qualitative research and data collection methods use secondary and primary data. Secondary data in the form of Permanent Scatterers Interferometry Synthetic Aperture Radar (PS-InSAR) Sentinel-1A images to determine soil deformation. Primary data uses a questionnaire to assess disaster risk management. Data analysis uses spatial and statistical analysis. Spatial analysis for land deformation mapping and statistical analysis for risk management. The results showed that the pattern of land deformation before the determination of the location of the capital city of Indonesia was random. On the other hand, after decision-making, it appears to be more systematic and homogeneous in adjacent areas with a decreasing range of about 5 cm per year. Other findings show that disaster risk management carried out by several agencies, especially the problem of land deformation in East Kalimantan, is still far from expectations and very minimal. The findings can be used for future disaster risk management to minimize negative impacts and reduce disaster risk.
Keywords: PS-INSAR; Land Deformation; Capital City; Disaster Risk Management
Full Text:
PDFReferences
Abd Wahid, M. A., Noor, M. J. M. M., & Hara, H. (2016). Recombinant moringa oleifera lectin produced in pichia pastoris is a potential natural coagulant. Evergreen Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 03(2), 11-16. https://doi.org/10.5109/1800867
Abi Suroso, D. S., & Firman, T. (2018). The role of spatial planning in reducing exposure towards impacts of global sea level rise case study: Northern coast of Java, Indonesia. Ocean & Coastal Management, 153, 84–97. https://doi.org/10.1016/j.ocecoaman.2017.12.007
Al-Musawi, M. H., & Al-Hinkawi, W. S. H. (2020). The Effect of Citie’s Shrinkage On Their Urban Fabric: A Case Study Of Garage Al Amana District In Baghdad. Journal of Engineering Science and Technology, 15(6), 3691–3708.
Amaratunga, D., Malalgoda, C., Haigh, R., Panda, A., & Rahayu, H. (2018). Sound practices of disaster risk reduction at local level. Procedia Engineering, 212, 1163–1170. https://doi.org/10.1016/j.proeng.2018.01.150
Azeriansyah, R., Prasetyo, Y., & Yuwono, B. D. (2019). Land Subsidence Monitoring in Semarang and Demak Coastal Areas 2016-2017 Using Persistent Scatterer Interferometric Synthetic Aperture Radar. IOP Conference Series: Earth and Environmental Science, 313(1), 012040. https://doi.org/10.1088/1755-1315/313/1/012040
Baas, S., Ramasamy, S., de Pryck, J. D., & Battista, F. (2008). Disaster risk management systems analysis A guidebook. Савремене Студије Безбедности, 175.
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375–2383. https://doi.org/10.1109/TGRS.2002.803792
Besoya, M., Govil, H., & Bhaumik, P. (2021). A review on surface deformation evaluation using multitemporal SAR interferometry techniques. Spatial Information Research, 29, 267–280. https://doi.org/10.1007/s41324-020-00344-8
Bianchini, S., Solari, L., Bertolo, D., Thuegaz, P., & Catani, F. (2021). Integration of satellite interferometric data in civil protection strategies for landslide studies at a regional scale. Remote Sensing, 13(10), 1881. https://doi.org/10.3390/rs13101881
Boukhemacha, M. A., Teleaga, D., Serbulea, M.-S., Poncos, V., Serpescu, I., Manoli, D. M., Toma, S.-A., Bica, I., & Haagmans, R. (2021). Combined in-situ and Persistent Scatterers Interferometry Synthetic Aperture Radar (PSInSAR) monitoring of land surface deformation in urban environments-case study: tunnelling works in Bucharest (Romania). International Journal of Remote Sensing, 42(7), 2641–2662. https://doi.org/10.1080/01431161.2020.1857876
Brandt, J. T., Sneed, M., & Danskin, W. R. (2020). Detection and measurement of land subsidence and uplift using interferometric synthetic aperture radar, San Diego, California, USA, 2016–2018. Proceedings of the International Association of Hydrological Sciences, 382, 45–49. https://doi.org/10.5194/piahs-382-45-2020, 2020.
Buchori, I., Sugiri, A., Mussadun, M., Wadley, D., Liu, Y., Pramitasari, A., & Pamungkas, I. T. D. (2018). A predictive model to assess spatial planning in addressing hydro-meteorological hazards: A case study of Semarang City, Indonesia. International Journal of Disaster Risk Reduction, 27, 415–426. https://doi.org/10.1016/j.ijdrr.2017.11.003
Burby, R. J., Beatley, T., Berke, P. R., Deyle, R. E., French, S. P., Godschalk, D. R., Kaiser, E. J., Kartez, J. D., May, P. J., & Olshansky, R. (1999). Unleashing the power of planning to create disaster-resistant communities. Journal of the American Planning Association, 65(3), 247–258. https://doi.org/10.1080/01944369908976055
Burby, R. J., Deyle, R. E., Godschalk, D. R., & Olshansky, R. B. (2000). Creating hazard resilient communities through land-use planning. Natural Hazards Review, 1(2), 99–106. https://doi.org/10.1061/(ASCE)1527-6988
Carla, T., Raspini, F., Intrieri, E., & Casagli, N. (2016). A simple method to help determine landslide susceptibility from spaceborne InSAR data: the Montescaglioso case study. Environmental Earth Sciences, 75, 1–12. https://doi.org/10.1007/s12665-016-6308-8
Castellazzi, P., Arroyo-Domínguez, N., Martel, R., Calderhead, A. I., Normand, J. C. L., Gárfias, J., & Rivera, A. (2016). Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data. International Journal of Applied Earth Observation and Geoinformation, 47, 102–111. https://doi.org/10.1016/j.jag.2015.12.002
Cavur, M., Moraga, J., Duzgun, H. S., Soydan, H., & Jin, G. (2021). Displacement analysis of geothermal field based on PSInSAR and SOM clustering algorithms a case study of Brady Field, Nevada—USA. Remote Sensing, 13(3), 349. https://doi.org/10.3390/rs13030349
Chen, F., Guo, H., Ma, P., Lin, H., Wang, C., Ishwaran, N., & Hang, P. (2017). Radar interferometry offers new insights into threats to the Angkor site. Science Advances, 3(3), e1601284. https://doi.org/ 10.1126/sciadv.1601284
Cigna, F., Esquivel Ramírez, R., & Tapete, D. (2021). Accuracy of Sentinel-1 PSI and SBAS InSAR displacement velocities against GNSS and geodetic leveling monitoring data. Remote Sensing, 13(23), 4800. https://doi.org/10.3390/rs13234800
Cigna, F., Tapete, D., Garduño-Monroy, V. H., Muñiz-Jauregui, J. A., García-Hernández, O. H., & Jiménez-Haro, A. (2019). Wide-area InSAR survey of surface deformation in urban areas and geothermal fields in the eastern Trans-Mexican Volcanic Belt, Mexico. Remote Sensing, 11(20), 2341. https://doi.org/10.3390/rs11202341
Costantini, M., Ferretti, A., Minati, F., Falco, S., Trillo, F., Colombo, D., Novali, F., Malvarosa, F., Mammone, C., & Vecchioli, F. (2017). Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data. Remote Sensing of Environment, 202, 250–275. https://doi.org/10.1016/j.rse.2017.07.017
Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., & Crippa, B. (2016). Persistent scatterer interferometry: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 78–89. https://doi.org/10.1016/j.isprsjprs.2015.10.011
Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., Luzi, G., & Crippa, B. (2015). Measuring thermal expansion using X-band persistent scatterer interferometry. ISPRS Journal of Photogrammetry and Remote Sensing, 100, 84–91. https://doi.org/10.1016/j.isprsjprs.2014.05.006
Darmansyah Tjitradi, E. (2019). Potensi Gempa Terhadap Struktur Bangunan Panggung di Lahan Basah Kalimantan Selatan. Buletin Profesi Insinyur, 2(2), 56–62. https://doi.org/10.20527/bpi.v2i2.42
Dasanayaka, U., & Matsuda, Y. (2022). Role of social capital in local knowledge evolution and transfer in a network of rural communities coping with landslide disasters in Sri Lanka. International Journal of Disaster Risk Reduction, 67, 102630. https://doi.org/10.1016/j.ijdrr.2021.102630
Devanthéry, N., Crosetto, M., Cuevas-González, M., Monserrat, O., Barra, A., & Crippa, B. (2016). Deformation monitoring using persistent scatterer interferometry and Sentinel-1 SAR data. Procedia Computer Science, 100, 1121–1126. https://doi.org/10.1016/j.procs.2016.09.263
Dong, J., Lai, S., Wang, N., Wang, Y., Zhang, L., & Liao, M. (2021). Multi-scale deformation monitoring with sentinel-1 InSAR analyses along the middle route of the south-north water diversion project in China. International Journal of Applied Earth Observation and Geoinformation, 100, 102324. https://doi.org/10.1016/j.jag.2021.102324
Dumka, R. K., SuriBabu, D., Malik, K., Prajapati, S., & Narain, P. (2020). PS-InSAR derived deformation study in the Kachchh, Western India. Applied Computing and Geosciences, 8, 100041. https://doi.org/10.1016/j.acags.2020.100041
Edyanto, C. B. H. (2011). Analisa Kebijakan Penataan Ruang Untuk Kawasan Rawan Tsunami di Wilayah Pesisir. Jurnal Teknologi Lingkungan, 12(3), 319–331. https://doi.org/10.29122/jtl.v12i3.1240
Erten, E., & Rossi, C. (2019). The worsening impacts of land reclamation assessed with Sentinel-1: The Rize (Turkey) test case. International Journal of Applied Earth Observation and Geoinformation, 74, 57–64. https://doi.org/10.1016/j.jag.2018.08.007
Fadhlurrohman, B., Prasetyo, Y., & Bashit, N. (2020). Studi Penurunan Muka Tanah di Kawasan Industri Kendal Dengan Metode Permanent Scatterer Interferometric Synthetic Aperture Radar (PS InSAR) Menggunakan Citra Sentinel 1-A Tahun 2014-2019. Jurnal Geodesi Undip, 9(2), 155–166. https://doi.org/10.14710/jgundip.2020.27177
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20. http://dx.doi.org/10.1109/36.898661
Ferretti, A., Savio, G., Barzaghi, R., Borghi, A., Musazzi, S., Novali, F., Prati, C., & Rocca, F. (2007). Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1142–1153. https://doi.org/10.1109/TGRS.2007.894440
Foroughnia, F., Nemati, S., Maghsoudi, Y., & Perissin, D. (2019). An iterative PS-InSAR method for the analysis of large spatio-temporal baseline data stacks for land subsidence estimation. International Journal Of Applied Earth Observation and Geoinformation, 74, 248–258. https://doi.org/10.1016/j.jag.2018.09.018
Glavovic, B. C. (2010). The role of land-use planning in disaster risk reduction: An introduction to perspectives from Australasia.
Gong, H., Pan, Y., Zheng, L., Li, X., Zhu, L., Zhang, C., Huang, Z., Li, Z., Wang, H., & Zhou, C. (2018). Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). Hydrogeology Journal, 26(5), 1417–1427. https://doi.org/10.1007/s10040-018-1768-4
Haqqi, M. K. F., Yuwono, B. D., & Awaluddin, M. (2015). Survei Pendahuluan Deformasi Muka Tanah dengan Pengamatan GPS di Kabupaten Demak (Studi Kasus: Pesisir Pantai Kecamatan Sayung). Jurnal Geodesi Undip, 4(4), 81–90. https://doi.org/10.14710/jgundip.2015.9932
Hu, X., Bürgmann, R., Schulz, W. H., & Fielding, E. J. (2020). Four-dimensional surface motions of the Slumgullion landslide and quantification of hydrometeorological forcing. Nature Communications, 11(1), 2792. https://doi.org/10.1038/s41467-020-16617-7
Huang, Q., Crosetto, M., Monserrat, O., & Crippa, B. (2017). Displacement monitoring and modelling of a high-speed railway bridge using C-band Sentinel-1 data. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 204–211. https://doi.org/10.1016/j.isprsjprs.2017.03.016
Jiang, H., Balz, T., Cigna, F., & Tapete, D. (2021). Land subsidence in Wuhan revealed using a non-linear PSInSAR approach with long time series of COSMO-SkyMed SAR data. Remote Sensing, 13(7), 1256. https://doi.org/10.3390/rs13071256
Jónsson, S., Zebker, H., Cervelli, P., Segall, P., Garbeil, H., Mouginis‐Mark, P., & Rowland, S. (1999). A shallow‐dipping dike fed the 1995 flank eruption at Fernandina Volcano, Galápagos, observed by satellite radar interferometry. Geophysical Research Letters, 26(8), 1077–1080. https://doi.org/10.1029/1999GL900108
Khan, R., Li, H., Afzal, Z., Basir, M., Arif, M., & Hassan, W. (2021). Monitoring subsidence in urban area by PSInSAR: A case study of Abbottabad City, Northern Pakistan. Remote Sensing, 13(9), 1651. https://doi.org/10.3390/rs13091651
Kodoatie, R. J. (2006). Pengelolaan bencana terpadu.
Kumalawati, R., Yuliarti, A., Anggraeni, R. N., & Murliawan, K. H. (2021). The potential mapping of land fire using SNPP VIIRS as a basis for environmental damage mitigation. https://doi.org/10.5109/4491638
Kusmiati, C. Y. (2005). Menuju Perbaikan Manajemen Penanggulangan Bencana di Indonesia. Jurnal Administrasi Publik, 4(2).
Lazarević, B. N. (2011). Integrating climate change adaptation policies in spatial development planning in Serbia: A challenging task ahead. Spatium, 24, 1–8. https://doi.org/10.2298/SPAT1124001L
Lestari, P. (2018). Komunikasi Bencana Aspek Penting Pengurangan Risiko Bencana. PT KANISIUS.
Littlejohn, S. W., & Foss, K. A. (2009a). Teori Komunikasi (Teories of human communication 9th). Salemba Humanika, Jakarta.
Littlejohn, S. W., & Foss, K. A. (2009b). Teori Komunikasi terjemahan Theories of Human Communication oleh Mohammad Yusuf Hamdan. Jakarta: Penerbit Salemba Humanika.
Littlejohn, S. W., & Foss, K. A. (2014). Teori Komunikasi Theories of. Human Communication (9th Ed.). Salemba Humanika.
Lu, P., Catani, F., Tofani, V., & Casagli, N. (2014). Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry. Landslides, 11, 685–696.
Luo, J., Wang, X., Zheng, C., Zhang, W., & Ding, Q. (2020). Monitoring and analysis of artificial island subsidence based on PSInSAR technology. IET International Radar Conference (IET IRC 2020), 2020, 1716–1721. https://doi.org 10.1109/IGARSS47720.2021.9553352
Manik, J. M., & Marasabessy, M. D. (2010). Tenggelamnya Jakarta dalam Hubungannya dengan Konstruksi Bangunan Beban Megacity. Makara Journal of Science, 14(1), 22.
Massonnet, D., & Rabaute, T. (1993). Radar interferometry: limits and potential. IEEE Transactions on Geoscience and Remote Sensing, 31(2), 455–464. https://doi.org/10.1109/36.214922
Meyer, F. (2019). Spaceborne Synthetic Aperture Radar: Principles, data access, and basic processing techniques. Synthetic Aperture Radar (SAR) Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation, 21–64. https://doi.org/10.25966/nr2c-s697
Milillo, P., Perissin, D., Salzer, J. T., Lundgren, P., Lacava, G., Milillo, G., & Serio, C. (2016). Monitoring dam structural health from space: Insights from novel InSAR techniques and multi-parametric modeling applied to the Pertusillo dam Basilicata, Italy. International Journal of Applied Earth Observation and Geoinformation, 52, 221–229. https://doi.org/10.1016/j.jag.2016.06.013
Mohd-Rahim, F. A., Chuing, L. S., Abd-Karim, S. B., Aziz, N. M., & Zainon, N. (2022). Risks of new technology for structural health monitoring of building structures. Journal of Sustainability Science and Management, 17(2), 91–111. https://doi.org/10.46754/jssm.2022.02.009
Mutaqin, B. W., Handayani, W., Rosaji, F. S. C., Wahyuningtyas, D., & Marfai, M. A. (2021). Geomorphological Analysis for the Identification of Small Volcanic Islands in North Maluku, Indonesia. Jurnal Geografi, 13(2), 184-194. DOI: https://doi.org/10.24114/jg.v13i2.21526. (n.d.).
Nurdin, R. (2015). Komunikasi dalam Penanggulangan Bencana. Jurnal Simbolika Research and Learning in Communication Study, 1(1). https://doi.org/10.31289/simbollika.v1i1.49
Ockwell, D., Whitmarsh, L., & O’Neill, S. (2009). Reorienting climate change communication for effective mitigation: forcing people to be green or fostering grass-roots engagement? Science Communication, 30(3), 305–327. https://doi.org/10.1177/1075547008328969
DOI: https://doi.org/10.24114/jg.v16i2.42810
Article Metrics
Abstract view : 156 timesPDF - 43 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 36/E/KPT/2019
Copyright ©2020 Jurusan Pendidikan Geografi Fakultas Ilmu Sosial Universitas Negeri Medan dan Ikatan Geograf Indonesia (IGI)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.