Detection of Urban Landscape Changes in Surabaya for the Years 2014-2024 Based on NDVI and NDBI Analysis of Landsat 8 OLI Imagery
DOI:
https://doi.org/10.24114/jg.v17i1.59320Keywords:
NDVI, NDBI, Surabaya, UrbanAbstract
This study investigates urban landscape changes in Surabaya from 2014 to 2024 using NDVI and NDBI indices derived from Landsat 8 OLI imagery. The Earth Engine platform was employed to generate cloud-free composite images, enabling detailed analysis of vegetation and built-up area changes. The methodology included a bivariate geovisualization technique to display areas of change, comparing NDVI and NDBI values over a decade to assess changes at a granular level. Results indicate that the 'Vegetation Stable - Built-up Area Stable' category dominates, covering 2422 km², suggesting consistent land use in established areas. This dominance indicates well-established land use patterns across much of the city. Significant urbanization is observed in the 'Vegetation Decreased - Built-up Area Increased' (70 km²) and 'Vegetation Stable - Built-up Area Increased' (177 km²) categories, reflecting ongoing development pressures. These areas highlight zones of active development and environmental intervention. Additionally, a 75 km² increase in vegetation, particularly in coastal mangrove regions, highlights successful environmental management efforts. The study achieved an overall accuracy of 71%, demonstrating the effectiveness of NDVI and NDBI in capturing urban dynamics. While some classes require improved detection accuracy, particularly those involving decreased built-up areas, the model reliably identifies increases in vegetation and built-up areas.References
Abrams, M., & Dekker, A. (2010). Remote Sensing of Urban and Suburban Areas Remote Sensing and Digital Image Processing. In Remote Sensing and Digital Image Processing. https://doi.org/10.1007/978-1-4020-4385-7
Ali, M. S., Arifin, H. S., & Nurhayati. (2021). Urbanization level and its effect on the structure and function of homegarden (Pekarangan) vegetation in West Java, Indonesia. Biodiversitas, 22(1), 173–183. https://doi.org/10.13057/biodiv/d220123
Alwedyan, S. (2023). Monitoring Urban Growth and Land Use Change Detection with Gis Techniques In Irbid City, Jordan. International Review for Spatial Planning and Sustainable Development, 11(1), 253–275. https://doi.org/10.14246/irspsd.11.1_253
Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052
Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A Land Use and Land Cover Classification System for Use with Remote Sensor Data. Geological Survey Professional Paper, 964, 1–41.
Anua, S. N., & Wong, W. V. C. (2022). Utilizing Landsat 8 OLI for land cover classification in plantations area. IOP Conference Series: Earth and Environmental Science, 1053(1). https://doi.org/10.1088/1755-1315/1053/1/012027
Calka, B. (2021). Bivariate choropleth map documenting land cover intensity and population growth in Poland 2006–2018. Journal of Maps, 17(1), 162–168. https://doi.org/10.1080/17445647.2021.2009925
Chaves, M. E. D., Picoli, M. C. A., & Sanches, I. D. (2020). Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A systematic review. Remote Sensing, 12(18). https://doi.org/10.3390/rs12183062
Chávez, D., Gallardo-Cruz, J. A., Solórzano, J. V., Peralta-Carreta, C., Enríquez, M., & Meave, J. A. (2020). Spatial correlates of floristic and structural variation in a Neotropical wetland forest. Wetlands Ecology and Management, 28(2), 341–356. https://doi.org/10.1007/s11273-020-09718-z
Chen, L., Li, M., Huang, F., & Xu, S. (2013). Relationships of LST to NDBI and NDVI in Changsha-Zhuzhou-Xiangtan area based on MODIS data. 6th International Congress on Image and Signal Processing (CISP 2013), Cisp, 840–845. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX200902018.htm
Chughtai, A. H., Abbasi, H., & Karas, I. R. (2021). A review on change detection method and accuracy assessment for land use land cover. Remote Sensing Applications: Society and Environment, 22(September 2020), 100482. https://doi.org/10.1016/j.rsase.2021.100482
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B
Congalton, R. G. (2001). Accuracy assessment and validation of remotely sensed and other spatial information. International Journal of Wildland Fire, 10(3–4), 321–328. https://doi.org/10.1071/wf01031
Drešković, N., Đug, S., & Osmanović, M. (2024). NDVI and NDBI Indexes as Indicators of the Creation of Urban Heat Islands in the Sarajevo Basin. Geographica Pannonica, 28(1), 34–43. https://doi.org/10.5937/gp28-48216
Grimmond, S. (2007). Urbanization and global environmental change: Local effects of urban warming. Geographical Journal, 173(1), 83–88. https://doi.org/10.1111/j.1475-4959.2007.232_3.x
Hemati, M., Hasanlou, M., Mahdianpari, M., & Mohammadimanesh, F. (2021). A systematic review of landsat data for change detection applications: 50 years of monitoring the earth. Remote Sensing, 13(15). https://doi.org/10.3390/rs13152869
Hidayati, I. N., Suharyadi, & Danoedoro, P. (2017). Pemetaan Lahan Terbangun Perkotaan Menggunakan Pendekatan NDBI dan Segmentasi Semi-Automatik. Prosiding Seminar Nasional Geografi UMS 2017, 19–28.
Jensen, J. R. (2014). Remote sensing of the environment: an earth resource perspective second edition. In Pearson Education Limited,Harlow, England (Vol. 1).
Kadhim, N., Mourshed, M., & Bray, M. (2016). Advances in remote sensing applications for urban sustainability. Euro-Mediterranean Journal for Environmental Integration, 1(1). https://doi.org/10.1007/s41207-016-0007-4
Kamal, M., Farda, N. M., Jamaluddin, I., Parela, A., Wikantika, K., Prasetyo, L. B., & Irawan, B. (2020). A preliminary study on machine learning and google earth engine for mangrove mapping. IOP Conference Series: Earth and Environmental Science, 500(1). https://doi.org/10.1088/1755-1315/500/1/012038
Katherina, L. K., & Indraprahasta, G. S. (2019). Urbanization Pattern in Indonesia’s Secondary Cities: Greater Surabaya and Its Path toward a Megacity. IOP Conference Series: Earth and Environmental Science, 338(1). https://doi.org/10.1088/1755-1315/338/1/012018
Levin, N., Kyba, C. C. M., Zhang, Q., Sánchez de Miguel, A., Román, M. O., Li, X., Portnov, B. A., Molthan, A. L., Jechow, A., Miller, S. D., Wang, Z., Shrestha, R. M., & Elvidge, C. D. (2020). Remote sensing of night lights: A review and an outlook for the future. Remote Sensing of Environment, 237(October 2018). https://doi.org/10.1016/j.rse.2019.111443
Long, H., Liu, Y., Hou, X., Li, T., & Li, Y. (2014). Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat International, 44, 536–544. https://doi.org/10.1016/j.habitatint.2014.10.011
Marwasta, D. (2019). Spatial Trends of Urban Physical Growth of Cities in Java, Indonesia, 1975–2015. ASEAN Journal on Science and Technology for Development, 36(2). https://doi.org/10.29037/ajstd.579
Masood, M., He, C., Shah, S. A., & Rehman, S. A. U. (2024). Land Use Change Impacts over the Indus Delta: A Case Study of Sindh Province, Pakistan. Land, 13(7). https://doi.org/10.3390/land13071080
Norvyani, D. A., Riqqi, A., Harto, A. B., & Safitri, S. (2018). The mapping of quantitative carrying capacity using multi-scale grid system (Case study: Water-provisioning ecosystem services in greater Bandung, West Java, Indonesia). HAYATI Journal of Biosciences, 25(1), 40–46. https://doi.org/10.4308/hjb.25.1.40
Purwono, N., Susetyo, D. B., Rijal, S. S., Syaripah, G. K., & Munawaroh, S. (2024). Assessing Urban Growth in Greater Surabaya Using Google Earth Engine: an Evaluation of Built-Up Area Expansion in Indonesian Secondary Cities. Journal of the Geographical Institute Jovan Cvijic SASA, 74(1), 127–138. https://doi.org/10.2298/IJGI230608004P
Riqqi, A., Fitria, A., Prijatna, K., Pratama, R. E., & Mahmudy, J. (2011). Indonesian Multi-scale Grid System for Environmental and Oceanic Data. 12th Biennal Conference of Pan Ocean Remote Sensing Conference, November 2014.
Saini, V. (2021). Mapping Environmental Impacts of Rapid Urbanisation and Deriving Relationship between NDVI , NDBI and Surface Temperature : A Case Study Mapping Environmental Impacts of Rapid Urbanisation and Deriving Relationship between NDVI , NDBI and Surface Temperat. IOP Conference Series: Earth and Environmental Science, 941. https://doi.org/10.1088/1755-1315/940/1/012005
Story, M., & Congalton, R. G. (1986). Remote Sensing Brief Accuracy Assessment: A User’s Perspective. Photogrammetric Engineering and Remote Sensing, 52(3), 397–399. https://www.asprs.org/wp-content/uploads/pers/1986journal/mar/1986_mar_397-399.pdf
Strode, G., Morgan, J. D., Thornton, B., Mesev, V., Rau, E., Shortes, S., & Johnson, N. (2019). Operationalizing trumbo’s principles of bivariate choropleth map design. Cartographic Perspectives, 2019(94), 5–24. https://doi.org/10.14714/CP94.1538
Surya, B., Salim, A., Hernita, H., Suriani, S., Menne, F., & Rasyidi, E. S. (2021). Land use change, urban agglomeration, and urban sprawl: A sustainable development perspective of makassar city, indonesia. Land, 10(6). https://doi.org/10.3390/land10060556
Toth, C., & Jóźków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 22–36. https://doi.org/10.1016/j.isprsjprs.2015.10.004
Trubina, L., Nikolaeva, O., & Mullayarova, P. (2019). The environmental monitoring and management of urban greenery using GIS technology The environmental monitoring and management of urban greenery using GIS technology. IOP Conf. Series: Earth and Environmental Science, 395. https://doi.org/doi:10.1088/1755-1315/395/1/012065
Trumbo, B. E. (1981). A theory for coloring bivariate statistical maps. American Statistician, 35(4), 220–226. https://doi.org/10.1080/00031305.1981.10479360
Trumbo, B. E., Sahana, V., Mondal, A., Sreekumar, P., Moos, N., Juergens, C., Redecker, A. P., Zhao, J., Cao, Y., Yu, L., Liu, X., Yang, R., & Gong, P. (2021). Geo-spatial analysis of population density and annual income to identify large-scale socio-demographic disparities. American Statistician, 35(January), 220–226. https://doi.org/10.1016/j.gecco.2022.e02036
Wulder, M. A., Roy, D. P., Radeloff, V. C., Loveland, T. R., Anderson, M. C., Johnson, D. M., Healey, S., Zhu, Z., Scambos, T. A., Pahlevan, N., Hansen, M., Gorelick, N., Crawford, C. J., Masek, J. G., Hermosilla, T., White, J. C., Belward, A. S., Schaaf, C., Woodcock, C. E., … Cook, B. D. (2022). Fifty years of Landsat science and impacts. Remote Sensing of Environment, 280(April), 113195. https://doi.org/10.1016/j.rse.2022.113195
Yasin, M. Y., Abdullah, J., Noor, N. M., Yusoff, M. M., & Noor, N. M. (2022). Landsat observation of urban growth and land use change using NDVI and NDBI analysis Landsat observation of urban growth and land use change using NDVI and NDBI analysis. IOP Conf. Series: Earth and Environmental Science, 1067. https://doi.org/10.1088/1755-1315/1067/1/012037
Yusroni, S. A., Kemalasari, V. T., & Putra, D. P. N. (2021). Identification of Land Cover Changesfrom Landsat 8 Oli Satellite Imagery Using Normalized Difference Vegetation Index (Ndvi) Method (Study Case: Surabaya). Journal of Marine-Earth Science and Technology, 2(1), 5–10. https://doi.org/10.12962/j27745449.v2i1.74
Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594. https://doi.org/10.1080/01431160304987
Zheng, Y., Tang, L., & Wang, H. (2021). An improved approach for monitoring urban built-up areas by combining NPP-VIIRS nighttime light, NDVI, NDWI, and NDBI. Journal of Cleaner Production, 328, 129488. https://doi.org/10.1016/j.jclepro.2021.129488
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Sufwandika Wijaya

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.