Temporal Trends and Spatial Patterns of Forest Fires in Central Kalimantan: Implications for Fire Management Policies
DOI:
https://doi.org/10.24114/jg.v17i2.64534Keywords:
Forest and Land Fires, Kernel Density, SIPONGI Hotspot, Central Kalimantan, Risk ManagementAbstract
Forest and land fires remain a significant environmental challenge in Central Kalimantan, Indonesia, causing extensive ecological, economic, and health impacts. This research investigates the spatial distribution and concentration of forest and land fire hotspots in the region from 2018 to 2024. Hotspot data from the SIPONGI system were processed using kernel density estimation to generate density maps, which were subsequently overlaid to pinpoint areas with the highest fire concentrations. The analysis identified 2019 as the year with the most severe fire occurrences, with Pulang Pisau District emerging as the region with the greatest fire intensity. These findings offer critical insights for directing fire prevention efforts and enhancing land management strategies to mitigate future fire risks in Central Kalimantan.References
Agustiyara, P., E. P., & Ramdani, R. (2021). Using Artificial Intelligence Technique in Estimating Fire Hotspots of Forest Fires. IOP Conference Series: Earth and Environmental Science, 717(1), 012019. https://doi.org/10.1088/1755-1315/717/1/012019
Budiningsih, K., Nurfatriani, F., Salminah, M., Ulya, N. A., Nurlia, A., Setiabudi, I. M., & Mendham, D. S. (2022). Forest Management Units' Performance in Forest Fire Management Implementation in Central Kalimantan and South Sumatra. Forests, 13(6), 894. https://doi.org/10.3390/f13060894
Canton, H. (2021). United Nations Environment Programme—UNEP. In The Europa Directory of International Organizations 2021 (pp. 188–214). Routledge. https://doi.org/10.4324/9781003179900-30
Cattau, M. E., Marlier, M. E., & DeFries, R. (2016). Effectiveness of Roundtable on Sustainable Palm Oil (RSPO) for reducing fires on oil palm concessions in Indonesia from 2012 to 2015. Environmental Research Letters, 11(10), 105007. https://doi.org/10.1088/1748-9326/11/10/105007
Crippa, M., Janssens-Maenhout, G., Guizzardi, D., & Galmarini, S. (2016). EU effect: Exporting emission standards for vehicles through the global market economy. Journal of Environmental Management, 183, 959–971. https://doi.org/10.1016/j.jenvman.2016.09.068
Crippa, P., Castruccio, S., Archer-Nicholls, S., Lebron, G. B., Kuwata, M., Thota, A., Sumin, S., Butt, E., Wiedinmyer, C., & Spracklen, D. V. (2016). Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Scientific Reports, 6(1), 37074. https://doi.org/10.1038/srep37074
Dommain, R., Couwenberg, J., & Joosten, H. (2011). Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quaternary Science Reviews, 30(7–8), 999–1010. https://doi.org/10.1016/j.quascirev.2011.01.018
Field, R. D., van der Werf, G. R., & Shen, S. S. P. (2009). Human amplification of drought-induced biomass burning in Indonesia since 1960. Nature Geoscience, 2(3), 185–188. https://doi.org/10.1038/ngeo443
Flahaut, B., Mouchart, M., Martin, E. S., & Thomas, I. (2003). The local spatial autocorrelation and the kernel method for identifying black zones. Accident Analysis & Prevention, 35(6), 991–1004. https://doi.org/10.1016/S0001-4575(02)00107-0
Gaveau, D. L. A., Locatelli, B., Salim, M. A., Yaen, H., Pacheco, P., & Sheil, D. (2019). Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conservation Letters, 12(3). https://doi.org/10.1111/conl.12622
Gaveau, D. L. A., Salim, M. A., Hergoualc'h, K., Locatelli, B., Sloan, S., Wooster, M., Marlier, M. E., Molidena, E., Yaen, H., DeFries, R., Verchot, L., Murdiyarso, D., Nasi, R., Holmgren, P., & Sheil, D. (2014). Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Scientific Reports, 4(1), 6112. https://doi.org/10.1038/srep06112
Han, Y., Hu, Y., Zhu, H., & Wang, F. (2023). A cyclically adjusted spatio-temporal kernel density estimation method for predictive crime hotspot analysis. Annals of GIS, 29(2), 177–191. https://doi.org/10.1080/19475683.2023.2166584
Harenda, K. M., Lamentowicz, M., Samson, M., & Chojnicki, B. H. (2018). The Role of Peatlands and Their Carbon Storage Function in the Context of Climate Change (pp. 169–187). https://doi.org/10.1007/978-3-319-71788-3_12
Hayasaka, H., Noguchi, I., Putra, E. I., Yulianti, N., & Vadrevu, K. (2014). Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environmental Pollution, 195, 257–266. https://doi.org/10.1016/j.envpol.2014.06.031
Hayasaka, H., Usup, A., & Naito, D. (2020). New Approach Evaluating Peatland Fires in Indonesian. Remote Sensing, 12(12), 2055. https://doi.org/10.3390/rs12122055
Hein, L., Spadaro, J. V., Ostro, B., Hammer, M., Sumarga, E., Salmayenti, R., Boer, R., Tata, H., Atmoko, D., & Castañeda, J.-P. (2022). The Health Impacts of Indonesian Peatland Fires. Environmental Health, 21(1), 62. https://doi.org/10.1186/s12940-022-00872-w
Horton, A. J., Lehtinen, J., & Kummu, M. (2022). Targeted land management strategies could halve the number of peatland fires in Central Kalimantan, Indonesia. Communications Earth & Environment, 3(1), 204. https://doi.org/10.1038/s43247-022-00534-2
Hoscilo, A., Page, S. E., Tansey, K. J., & Rieley, J. O. (2011). Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005. International Journal of Wildland Fire, 20(4), 578. https://doi.org/10.1071/WF10029
Hu, Y., Wang, F., Guin, C., & Zhu, H. (2018). A spatio-temporal kernel density estimation framework for predictive crime hotspot mapping and evaluation. Applied Geography, 99, 89–97. https://doi.org/10.1016/j.apgeog.2018.08.001
Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L. A., Flemming, J., Parrington, M., Inness, A., Murdiyarso, D., Main, B., & van Weele, M. (2016). Carbon emissions from fires over maritime Southeast Asia in 2015 were the largest since 1997. Scientific Reports, 6(1), 26886. https://doi.org/10.1038/srep26886
Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021 – The Physical Science Basis. Cambridge University Press. https://doi.org/10.1017/9781009157896
Joshi, S., Kommaraji, R. V., Phillips, J. M., & Venkatasubramanian, S. (2011). Comparing distributions and shapes using the kernel distance. Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry, 47–56. https://doi.org/10.1145/1998196.1998204
Kazmi, S. S. A., Ahmed, M., Mumtaz, R., & Anwar, Z. (2022). Spatiotemporal Clustering and Analysis of Road Accident Hotspots by Exploiting GIS Technology and Kernel Density Estimation. The Computer Journal, 65(2), 155–176. https://doi.org/10.1093/comjnl/bxz158
Langner, A., & Siegert, F. (2009). Spatiotemporal fire occurrence in Borneo over a period of 10 years. Global Change Biology, 15(1), 48–62. https://doi.org/10.1111/j.1365-2486.2008.01828.x
Larasati, B., Kanzaki, M., Purwanto, R. H., & Sadono, R. (2019). Fire Regime in a Peatland Restoration Area: Lessons from Central Kalimantan. Jurnal Ilmu Kehutanan, 13(2), 210. https://doi.org/10.22146/jik.52436
Little, K., Graham, L. J., Flannigan, M., Belcher, C. M., & Kettridge, N. (2024). Landscape controls on fuel moisture variability in fire-prone heathland and peatland landscapes. Fire Ecology, 20(1), 14. https://doi.org/10.1186/s42408-024-00248-0
Medrilzam, M., Dargusch, P., Herbohn, J., & Smith, C. (2014). The socio-ecological drivers of forest degradation in part of the tropical peatlands of Central Kalimantan, Indonesia. Forestry: An International Journal of Forest Research, 87(2), 335–345. https://doi.org/10.1093/forestry/cpt033
Miettinen, J., Shi, C., & Liew, S. C. (2017). Fire Distribution in Peninsular Malaysia, Sumatra, and Borneo in 2015 with Special Emphasis on Peatland Fires. Environmental Management, 60(4), 747–757. https://doi.org/10.1007/s00267-017-0911-7
Mishra, S., Page, S. E., Cobb, A. R., Lee, J. S. H., Jovani‐Sancho, A. J., Sjögersten, S., Jaya, A., Aswandi, & Wardle, D. A. (2021). Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. Journal of Applied Ecology, 58(7), 1370–1387. https://doi.org/10.1111/1365-2664.13905
Noojipady, P., Morton, D. C., Schroeder, W., Carlson, K. M., Huang, C., Gibbs, H. K., Burns, D., Walker, N. F., & Prince, S. D. (2017). Managing fire risk during drought: the Influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia. Earth System Dynamics, 8(3), 749–771. https://doi.org/10.5194/esd-8-749-2017
Okabe, A., Satoh, T., & Sugihara, K. (2009). A kernel density estimation method for networks, its computational method, and a GIS‐based tool. International Journal of Geographical information Science, 23(1), 7–32. https://doi.org/10.1080/13658810802475491
Page, S. E., & Baird, A. J. (2016). Peatlands and Global Change: Response and Resilience. Annual Review of Environment and Resources, 41(1), 35–57. https://doi.org/10.1146/annurev-environ-110615-085520
Page, S., Hooijer, A., Rieley, J., Banks, C., & Hoscilo, A. (2012). The tropical peat swamps of Southeast Asia: In Biotic Evolution and Environmental Change in Southeast Asia (pp. 406–433). Cambridge University Press. https://doi.org/10.1017/CBO9780511735882.018
Peraturan Menteri Lingkungan Hidup Dan Kehutanan Republik Indonesia Nomor 27 Tahun 2021 Tentang Indeks Kualitas Lingkungan Hidup, Pub. L. No. 27, KLHK (Kementerian Lingkungan Hidup dan Kehutanan Indonesia) (2021).
Shuo, Z., Jingyu, Z., Zhengxiang, Z., & Jianjun, Z. (2021). Identifying the density of grassland fire points with kernel density estimation based on spatial distribution characteristics. Open Geosciences, 13(1), 796–806. https://doi.org/10.1515/geo-2020-0265
Sutikno, S., Rinaldi, R., Saputra, E., Kusairi, M., Saharjo, B. H., & Putra, E. I. (2020). Water Management for Hydrological Restoration and Fire Prevention in Tropical Peatlands. IOP Conference Series: Materials Science and Engineering, 933(1), 012053. https://doi.org/10.1088/1757-899X/933/1/012053
Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G. R., & Watts, A. (2015). Global Vulnerability of Peatlands to Fire and Carbon Loss Nature Geoscience, 8(1), 11–14. https://doi.org/10.1038/ngeo2325
Usup, A., & Hayasaka, H. (2023). Peatland Fire Weather Conditions in Central Kalimantan, Indonesia. Fire, 6(5), 182. https://doi.org/10.3390/fire6050182
Varkkey, H. (2019). Transboundary Pollution. In Political Science. Oxford University Press. https://doi.org/10.1093/obo/9780199756223-0290
Vetrita, Y., & Cochrane, M. A. (2019). Fire Frequency and Related Land-Use and Land-Cover Changes in Indonesia's Peatlands. Remote Sensing, 12(1), 5. https://doi.org/10.3390/rs12010005
Węglarczyk, S. (2018). Kernel density estimation and its application. ITM Web of Conferences, 23, 00037. https://doi.org/10.1051/itmconf/20182300037
Wijedasa, L. S., Sloan, S., Page, S. E., Clements, G. R., Lupascu, M., & Evans, T. A. (2018). Carbon emissions from South-East Asian peatlands are expected to increase despite emission-reduction schemes. Global Change Biology, 24(10), 4598–4613. https://doi.org/10.1111/gcb.14340
Wooster, M. J., Perry, G. L. W., & Zoumas, A. (2012). Fire, drought, and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences, 9(1), 317–340. https://doi.org/10.5194/bg-9-317-2012
Zhang, L., Zhang, Q., Yang, Q., Yue, L., He, J., Jin, X., & Yuan, Q. (2025). Near-real-time wildfire detection approach using Himawari-8/9 geostationary satellite data, integrating multi-scale spatial–temporal features. International Journal of Applied Earth Observation and Geoinformation, 137, 104416. https://doi.org/10.1016/j.jag.2025.104416
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aswin Nur Saputra, Rixal Rixal, Rizky Pamuji, Yusuf Al Arief

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.