Integrating UAV Data and Community Knowledge for Optimal Tsunami Evacuation Route Map in Coastal Loto Village, Ternate
DOI:
https://doi.org/10.24114/jg.v17i2.65354Keywords:
UAV Data, Community Knowledge, Participatory Mapping, Evacuation Route, TsunamiAbstract
The coastal area of Ternate Island has a high potential for tsunami disasters and complex tectonics. The tsunami on Ternate Island was triggered by an earthquake in the Maluku Sea and the eruption of Mount Gamalama under the sea. The rapid development of Ternate, especially in the tourism sector, such as Loto Agrotourism Village, West Ternate, demands attention to the safety of visitors and residents. The main problem in Loto Village is the lack of evacuation routes, so an effective evacuation strategy is needed to minimize losses during a tsunami disaster. This study aims to determine evacuation routes using UAV data and participatory mapping in Loto Village, Ternate City. UAV aerial photos were processed using photogrammetry techniques with Agisoft Metashape Professional software, producing Ortho-Mosaic Maps and Digital Elevation Model (DEM), which were analyzed in QGIS software. The ortho-mosaic map was overlaid with a tsunami hazard map to create temporary evacuation routes and points (TES), which were confirmed through participatory mapping. The Final Map shows four TESs, which are accessible via footpaths, side roads, and main roads. In the event of a tsunami, tourists and residents in the Lota Agrotourism area can use this map for evacuation. The map can also be an important reference for the government in forming disaster mitigation policies to ensure the safety of tourist destinations that are vulnerable to tsunamis.References
Achmad, R., Taib, S., Wahyu Ningrum, R., Suryanto, W., Aswan, M., Salam, R., Nuri Amelia, R., & Wahiddin, N. (2023). Pemodelan Tsunami Berdasarkan Amplitudo Maksimum Historis Gempa Bumi di Pesisir Jailolo Selatan. Jurnal Geofisika Eksplorasi, 09(03), 231–247. https://doi.org/https://doi.org/10.23960/jge.v9i2.338
Agisoft LLC. (2023). Agisoft Metashape User Manual version 2.0. In Agisoft Metashape. https://www.agisoft.com/pdf/metashape-pro_1_8_en.pdf (Accessed 19.07.2023)
Amelia, R., Pasongli, H., Latupeirissa, A. N., Saprudin, S., & Aswan, M. (2024). Multi-Risk Analysis of Geological Disasters In The Jailolo Coastal Area As A Disaster Mitigation-Based Tourism Development Strategy. Jurnal Pendidikan, Sains, Geologi, Dan Geofisika (GeoScienceEd Journal), 5(1), 68–74. https://doi.org/10.29303/goescienceed.v5i1.290
Arsyad, L. O. M. N., Statiswaty, S., Iradat, L. M., Yamin, M., & Sugiyarto, T. (2020). Akurasi Citra Data Foto Udara UAV Quadcopter Persimpangan Lalu Lintas Kota Kendari. Rekayasa Sipil, 14(1), 51–59. https://doi.org/10.21776/ub.rekayasasipil.2020.014.01.7
Ashar, F., Amaratunga, D., & Haigh, R. (2018). Tsunami Evacuation Routes Using Network Analysis: A case study in Padang. Procedia Engineering, 212, 109–116. https://doi.org/10.1016/j.proeng.2018.01.015
Berryman, K. (2006). Review of Tsunami Hazard and Risk in New Zealand. Institute of Geological and Nuclear Sciences, September, 139.
Boissiere, M., Duchelle, A. E., Atmadja, S., & Simonet, G. (2019). Panduan teknis pelaksanaan pemetaan desa partisipatif. In Panduan teknis pelaksanaan pemetaan desa partisipatif. Pusat Penelitian Kehutanan Internasional (CIFOR). https://doi.org/10.17528/cifor/007338
Bonilauri, E. M., Harris, A. J. L., Morin, J., Ripepe, M., Mangione, D., Lacanna, G., Ciolli, S., Cusolito, M., & Deguy, P. (2021). Tsunami evacuation times and routes to safe zones: a GIS-based approach to tsunami evacuation planning on the island of Stromboli, Italy. Journal of Applied Volcanology, 10(1), 1–19. https://doi.org/10.1186/s13617-021-00104-9
BPS. (2024). Kota Ternate Dalam Angka (R. H. A. Muliawan (ed.); Issue 22). Badan Pusat Statistik Kota Ternate.
Bryant, E. (2008). Tsunami: The Underrated Hazard (Second edition). In Building Standards. Praxis Publishing, Springer. https://doi.org/10.14778/3425879.3425880
Cardwell, R. K., Isacks, B. L., & Karig, D. E. (1980). The spatial distribution of earthquakes, focal mechanism solutions, and subducted lithosphere in the Philippine and northeastern Indonesian Islands. In The tectonic and geologic evolution of Southeast Asian seas and islands. Part 1 (pp. 1–35). https://doi.org/10.1029/gm023p0001
Danardono, Wibowo, A. A., Sari, D. N., Priyono, K. D., & Dewi, E. S. M. (2023). Tsunami Hazard Mapping Based on Coastal System Analysis Using High Resolution Unmanned Aerial Vehicle (UAV) Imagery (Case Study in Kukup Coastal Area, Gunungkidul Regency, Indonesia). Geographia Technica, 18(2), 51–67. https://doi.org/10.21163/GT
Darlan, Y. (1996). Geomorfologi wilayah pesisir. Aplikasi Untuk Penelitian Wilayah Pantai. Pusat Pengembangan Geologi Kelautan.
Grumbly, S. M., Frazier, T. G., & Peterson, A. G. (2019). Examining the Impact of Risk Perception on the Accuracy of Anisotropic, Least-Cost Path Distance Approaches for Estimating the Evacuation Potential for Near-Field Tsunamis. Journal of Geovisualization and Spatial Analysis, 3(1), 1–14. https://doi.org/10.1007/s41651-019-0026-1
Hamilton, W. (1979). Tectonics of the Indonesian Region (4th edn.). United States Government Printing Office.
Handayani, W., Mutaqin, B. W., Marfai, M. A., Tyas, D. W., Alwi, M., Rosaji, F. S. C., Hilmansyah, A. A., Musthofa, A., & Fahmi, M. S. I. (2022). Coastal Hazard Modeling in Indonesia Small Island: Case Study of Ternate Island. IOP Conference Series: Earth and Environmental Science, 1039(1). https://doi.org/10.1088/1755-1315/1039/1/012025
Hatherton, T., & Dickinson, W. R. (1969). Relationship Between Andesitic Volcanism and Seismicity in Indonesia, the Lesser Antilles, and Other Island Arcs. J Geophys Res, 74(22), 5301–5310. https://doi.org/10.1029/jb074i022p05301
Khan, A., Gupta, S., & Gupta, S. K. (2020). Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. International Journal of Disaster Risk Reduction, 47(May), 101642. https://doi.org/10.1016/j.ijdrr.2020.101642
Lessy, M. R., & Wahyuningrum, R. (2020). Pemetaan Partisipatif Jalur Evakuasi Tsunami Di Desa Babang Kabupaten Halmahera Selatan Maluku Utara. Kacanegara. Jurnal Pengabdian Pada Masyarakat, 3(2). https://doi.org/10.28989/kacanegara.v3i2.672
Marfai, M. A., Khakim, N., Fatchurohman, H., & Salma, A. D. (2021a). Planning tsunami vertical evacuation routes using high-resolution UAV digital elevation model: case study in Drini Coastal Area, Java, Indonesia. Arabian Journal of Geosciences, 14(19). https://doi.org/10.1007/s12517-021-08357-9
Marfai, M. A., Khakim, N., Fatchurohman, H., & Salma, A. D. (2021b). Planning tsunami vertical evacuation routes using high-resolution UAV digital elevation model: case study in Drini Coastal Area, Java, Indonesia. Arabian Journal of Geosciences, 14(19), 1–13. https://doi.org/10.1007/s12517-021-08357-9
Marfai, M. A., Sunarto, Khakim, N., Cahyadi, A., Rosaji, F. S. C., Fatchurohman, H., & Wibowo, Y. A. (2018). Topographic data acquisition in tsunami-prone coastal area using Unmanned Aerial Vehicle (UAV). IOP Conference Series: Earth and Environmental Science, 148(1). https://doi.org/10.1088/1755-1315/148/1/012004
Marfai, M. A., Sunarto, Khakim, N., Fatchurohman, H., Cahyadi, A., Wibowo, Y. A., & Rosaji, F. S. C. (2019). Tsunami hazard mapping and loss estimation using geographic information system in Drini Beach, Gunungkidul Coastal Area, Yogyakarta, Indonesia. E3S Web of Conferences, 76, 6. https://doi.org/10.1051/e3sconf/20197603010
Marwan, M., Wirandha, F. S., Nizzamuddin, N., & Susanta, F. F. (2020). Comparison of Accuracy Aerial Photography UAV (Unmanned Aerial Vehicle) and GNSS (Global Navigation Satelitte System) for Mapping of Lambarih Village, Aceh Besar, Aceh. Journal of Aceh Physics Society, 9(3), 78–83. https://doi.org/10.24815/jacps.v9i3.17151
Mccaffrey, R., Silver, E. A., & Raitt, R. W. (1980). Crustal structure of the Molucca Sea collision zone, Indonesia. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Part 1, January 1980, 161–177. https://doi.org/10.1029/GM023p0161
Nasution, L., Aji, K., Rohana Sufia, & Tangge, N. A. (2024). Strategi Pengembangan Agrowisata Berbasis Lingkungan di Desa Loto Kecamatan Ternate Barat. Jurnal Spatial Wahana Komunikasi Dan Informasi Geografi, 24(1), 32–40. https://doi.org/10.21009/spatial.241.04
Nizamuddin, N., Wirandha, F. S., & Ardiansyah. (2023). Utilization of Unmanned Aerial Vehicle (UAV) for Topographic Survey Using Ground Control Points (GCP) from Geodetic GNSS. Aceh International Journal of Science and Technology, 12(1), 60–68. https://doi.org/10.13170/aijst.12.1.31606
Rachman, G., Santosa, B. J., Nugraha, A. D., Rohadi, S., Rosalia, S., Zulfakriza, Z., Sungkono, S., Sahara, D. P., Muttaqy, F., Supendi, P., Ramdhan, M., Ardianto, A., & Afif, H. (2022). Seismic Structure Beneath the Molucca Sea Collision Zone from Travel Time Tomography Based on Local and Regional BMKG Networks. Applied Sciences (Switzerland), 12(20). https://doi.org/10.3390/app122010520
Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., & Sarazzi, D. (2011). UAV Photogrammetry for Mapping and 3D Modeling (Current Status and Future Perspectives). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII(September), 14–16. https://doi.org/https://doi.org/10.5194/isprsarchives-xxxviii-1-c22-25-2011
Samaddar, S., Si, H., Jiang, X., Choi, J., & Tatano, H. (2022). How Participatory is Participatory Flood Risk Mapping? Voices from the Flood Prone Dharavi Slum in Mumbai. International Journal of Disaster Risk Science, 13(2), 230–248. https://doi.org/10.1007/s13753-022-00406-5
Setiyawidi, S., Setiawan, I., & Somantri, L. (2011). Pemanfaatan Sistem Informasi Geografis Untuk Zonasi Tingkat Kerawanan Bencana Letusan Gunung Api Tangkubanparahu. Jurnal Geografi Gea, 11(2), 209–225. https://doi.org/10.17509/gea.v11i2.1635
Silver, E. A., & Moore, J. C. (1978). The Molucca Sea Collision Zone, Indonesia. Journal of Geophysical Research: Solid Earth, 83(B4), 1681–1691. https://doi.org/10.1029/jb083ib04p01681
Takabatake, T., Shibayama, T., Esteban, M., Ishii, H., & Hamano, G. (2017). Simulated tsunami evacuation behavior of local residents and visitors in Kamakura, Japan. International Journal of Disaster Risk Reduction, 23(January), 1–14. https://doi.org/10.1016/j.ijdrr.2017.04.003
Trindade, A., Teves-Costa, P., & Catita, C. (2018). A GIS-based analysis of constraints on pedestrian tsunami evacuation routes: Cascais case study (Portugal). Natural Hazards, 93, 169–185. https://doi.org/10.1007/s11069-017-3152-4
Twigg, J. (2015). Disaster Risk Reduction (New Editio). Overseas Development Institute.
Wahyu Ningrum, R., Suryanto, W., Wahyudi, W., Sholihun, S., Lessy, M. R., Oryza, D., Sofian, M., Raharjo, W., Aswan, M., & Amelia, R. N. (2025). Application of numerical simulation method integrated SfM-UAV to tsunami hazard map in Jailolo. Jàmbá - Journal of Disaster Risk Studies, 17(1), a1813. https://doi.org/https://doi.org/10.4102/jamba.v17i1.1813.
Wicaksono, I. (2023). Perencanaan Evakuasi Bencana Tsunami Memanfaatkan Teknologi UAV Di Kawasan Wisata Pantai Sepanjang Kabupaten Gunung Kidul. Universitas Gadjah Mada.
Widiwijayanti, C., Tiberi, C., Deplus, C., Diament, M., Mikhailov, V., & Louat, R. (2004). Geodynamic evolution of the northern Molucca Sea area (Eastern Indonesia) constrained by 3-D gravity field inversion. Tectonophysics, 386(3–4), 203–222. https://doi.org/10.1016/j.tecto.2004.05.003
Wood, N., Jones, J., Schelling, J., & Schmidtlein, M. (2014). Tsunami vertical-evacuation planning in the U.S. Pacific Northwest as a geospatial, multi-criteria decision problem. International Journal of Disaster Risk Reduction, 9(August), 68–83. https://doi.org/10.1016/j.ijdrr.2014.04.009
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Risky Nuri Amelia, Rohima Wahyu Ningrum, Tamrin Robo, Muhammad Ikhsan, Triani Triani, Marwis Aswan, Yuni Andriyani Safitri, Heinrich Rakuasa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.