Mechanical properties of water hyacinth (Eichhornia crassipes) and sansevieria (Sansevieria trifasciata) fiber reinforced composite with polyester matric
Abstract
Sansevieria (Sansevieria trifasciata) fibers and water hyacinth (Eichhornia Crassipes) fibers as natural fiber producers with good quality have good potential to be developed. This study aims to examine the production and characteristics of composites made from sansevieria fiber and water hyacinth fiber with a polyester matrix through the employment of the hand lay up method. This composite uses variations in the composition of the fiber mixture by soaking 5% NaOH for 2 hours at room temperature, for the resulting composite material. The resulting composite material is then subjected to a bending test to determine its mechanical properties, utilizing the ASTM D638 test standard. Based on the conducted research, the most favorable outcomes in terms of bending test results and modulus of elasticity are observed with a 10% incorporation of sansevieria fiber, yielding an average of 5.520 MPa for bending test and an elastic modulus of 7.444 MPa. Alternatively, when combining both fibers, the optimal mixture consists of 20% sansevieria fiber and 20% eceng gondok fiber, resulting in an average bending test value of 7.503 MPa and a modulus of elasticity of 7.873 MPa.
Keywords
Full Text:
PDFReferences
Adeniyi, A. G., Adeoye, S. A., & Ighalo, J. O. (2020). Sansevieria trifasciata fibre and composites: a review of recent developments. International Polymer Processing, 35(4), 344-354. https://doi.org/doi:10.3139/217.3914
Ajithram, A., Winowlin Jappes, J. T., & Brintha, N. C. (2021). Water hyacinth (Eichhornia crassipes) natural composite extraction methods and properties – A review. Materials Today: Proceedings, 45,1626–1632. https://doi.org/10.1016/j.matpr.2020.08.472
Dass, A., & Chellamuthu, S. (2022). Physico Chemical and Mechanical Properties of Natural Cellulosic Water Hyacinth Fiber and Its Composites. Journal of Natural Fibers, 19(15), 11413–11423. https://doi.org/10.1080/15440478.2022.2025979
Drabczyk, A., Kudłacik-Kramarczyk, S., Korniejenko, K., Figiela, B., & Furtos, G. (2023). Review of geopolymer nanocomposites: novel materials for sustainable development. Materials, 16(9), 3478. https://doi.org/10.3390/ma16093478
Flores Ramirez, N., Sanchez Hernandez, Y., Cruz de Leon, J., Vasquez Garcia, S. R., Domratcheva Lvova, L., & Garcia Gonzalez, L. (2015). Composites from water hyacinth (Eichhornea crassipe) and polyester resin. Fibers and Polymers, 16(1), 196–200. https://doi.org/10.1007/s12221-015-0196-5
Guna, V., Ilangovan, M., Anantha Prasad, M. G., & Reddy, N. (2017). Water Hyacinth: A Unique Source for Sustainable Materials and Products. ACS Sustainable Chemistry and Engineering, 5(6), 4478–4490. https://doi.org/10.1021/acssuschemeng.7b00051
Hairiyah, N., Amalia, R. R., & Widyastuti, A. (2018). Pembuatan Mikrokomposit Dari Serat Alam Purun Tikus (Eleocharis Dulcis) Dan Eceng Gondok (Eichornia Crassipes)Sebagai Filler Dengan Limbah Plastik Polyethylene Terephthalate (PET) Sebagai Matriks. Jurnal Teknologi Agro-Industri, 4(2), 61–72. https://doi.org/10.34128/jtai.v4i2.50
Harun, I., Pushiri, H., Amirul-Aiman, A. J., & Zulkeflee, Z. (2021). Invasive water hyacinth: Ecology, impacts and prospects for the rural economy. Plants, 10(8). https://doi.org/10.3390/plants10081613
Hastuti, S., Pramono, C., & Paryono. (2019). Utilization of palm fiber waste as reinforcement composite material for the manufacture of public housing panel. AIP Conference Proceedings, 2097(April). https://doi.org/10.1063/1.5098190
Jirawattanasomkul, T., Minakawa, H., Likitlersuang, S., Ueda, T., Dai, J.-G., Wuttiwannasak, N., & Kongwang, N. (2021). Use of water hyacinth waste to produce fibre-reinforced polymer composites for concrete confinement: Mechanical performance and environmental assessment. Journal of Cleaner Production, 292, 126041. https://doi.org/10.1016/j.jclepro.2021.126041
Li, F., He, X., Srishti, A., Song, S., Tan, H. T. W., Sweeney, D. J., Ghosh, S., & Wang, C.-H. (2021). Water hyacinth for energy and environmental applications: A review. Bioresource Technology, 327, 124809. https://doi.org/10.1016/j.biortech.2021.124809
Lokantara, I. P., Suardana, N., Surata, I., & Winaya, I. (2020). Effect of Alkali Treatment on the Tensile Strength of Lidah Mertua Fiber/ Polypropylene Recycled Biocomposite. International Journal of Engineering and Emerging Technology, 4(2), 50. https://doi.org/10.24843/ijeet.2019.v04.i02.p09
Lumbangaol, T.N., & Nurfajriani, N. (2023). Biodegradation Study of Polymer Composites Reinforced by Areca catechu fibers (Areca catechu L.) and Snake plant fibers (Sansevieria Trifasciata). Indonesian Journal of Chemical Science and Technology, 6, 35-39.
Mesfin, S., Gnanadurai Rengiah, R., Shiferaw, M., & Guadie, T. (2023). Effect of Fiber Content on Tensile and Flexural Strength of Water Lily Fiber Reinforced Polyester Resin Composite. Composites Theory and Practice, 2023(3), 113–117
Napitupulu, L. O. B., Widyasanti, A., Thoriq, A., & Yusuf, A. (2019). Kajian Proses dan Karakteristik Kain Tenun Serat Alami Tanaman Lidah Mertua (Sansevieria trifasciata P.). Jurnal Ilmiah Rekayasa Pertanian dan Biosistem, 7(2), 207-220.
Nurfajriani, Widiarti, L., Gea, S., Thamrin, & Wirjosentono, B. (2015). Mechanical properties of oil palm trunk by reactive compregnation methode with dammar resin. International Journal of PharmTech Research, 8(1), 74–79.
Nurfajriani, N., Herlinawati, H., Yusuf, M., Siregar, M. I., & Yunus, M. (2022). Mechanical properties of polyethylene matrix composites with areca fruit peel powder filler (Areca catechu) and sugar cane fiber (Saccharum officinarum L). Journal of Physics: Conference Series, 2193, p. 012058). https://doi:10.1088/1742 6596/2193/1/01205
Nurfajriani, A, Sudrajat., A, N, Pulungan., M, Yusuf., I, D, Pardosi. (2023). Mechanical Characterization of Composites Reinforced by Corn Husk Fiber (Zea mays) Waste and Coffee Husk Fiber (Coffea arabica L). Materials Science Forum 1080, 75-81. https://doi:10.4028/p-55mlh7
Phiri, R., Mavinkere Rangappa, S., Siengchin, S., Oladijo, O. P., & Dhakal, H. N. (2023). Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Advanced Industrial and Engineering Polymer Research, 6(4), 436–450. https://doi.org/10.1016/j.aiepr.2023.04.004
Rahman,A., Farid,M dan Ardhyanata, H, ( 2016), Pengaruh Komposisi Material Komposit dengan Matriks Polypropylene Berpenguat Serat Alam Terhadap Morfologi dan Kekuatan Sifat Fisik, Jurnal Teknik, 5(2).
Raj, F. I., Appadurai, Pushparaj, L., & Thanu, C. (2023). Mechanical characterization of randomly oriented short Sansevieria Trifasciata natural fibre composites. International Polymer Processing, 38(5), 564-581. https://doi.org/10.1515/ipp-2023-4377
Sulardjaka, S., Nugroho, S., & Ismail, R. (2020). Peningkatan Kekuatan Sifat Mekanis Komposit Serat Alam menggunakan Serat Enceng Gondok (Tinjauan Pustaka). Teknik, 41(1), 27–39. https://doi.org/10.14710/teknik.v41i1.23473
Widodo, E., Pratikto, Sugiarto, & Widodo, T. D. (2024). Comprehensive investigation of raw and NaOH alkalized sansevieria fiber for enhancing composite reinforcement. Case Studies in Chemical and Environmental Engineering, 9, 100546. https://doi.org/10.1016/j.cscee.2023.100546
DOI: https://doi.org/10.24114/jpkim.v16i2.56532
Article Metrics
Abstract view : 93 timesPDF - 81 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nurfajriani Nurfajriani, Ahmad Nasir Pulungan, Ajat Sudrajat, MS Manurung, Rahayu Rahayu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Pendidikan Kimia
Contact: +62 853-1769-2813
Email: jpkim.pps@unimed.ac.id
Jl. Willem Iskandar, Pasar V, Medan Estate, Medan City, North Sumatra Province, Postal Code 20221. Phone/fax: (061) 661 3365 / +62 852-7802-1981.
This work is licensed under a Creative Commons Attribution 4.0 International License.